Processos Estocásticos (EST020)

Prof. Lupércio F. Bessegato

Lista de Exercícios nº 5 - Processo de Poisson

1) Sejam $\{X_t; t \ge 0\}$ e $\{Y_t; t \ge 0\}$ dois processos de Poisson com parâmetros λ_I e λ_2 , respectivamente. Defina $Z_t = X_t - Y_t$, t ≥ 0 . Este é um processo estocástico cujo espaço de estados consiste de todos os inteiros (positivos, negativos e zero).

Seja
$$P_n(t) = P\{Z_t = n\}, n = 0, \pm 1, \pm 2, \pm 3, \pm 4, ...$$

Seja
$$P_n(t) = P\{Z_t = n\}, n = 0, \pm 1, \pm 2, \pm 3, \pm 4, ...$$

Estabeleça a fórmula
$$\sum_{n = -\infty}^{\infty} P_n(t) Z^n = \exp\{-(\lambda_1 + \lambda_2)t\} \exp\{\lambda_1 zt + (\lambda_2/z)t\}$$
Colon Def(Z(x)) = $P\{Z_t = n\}, n = 0, \pm 1, \pm 2, \pm 3, \pm 4, ...$

Calcule $E\{Z(t)\}$ e $E\{Z(t)^2\}$

- Chamadas chegam a uma taxa de 15 chamadas por minuto de acordo a um processo de Poisson.
 - Encontre a probabilidade de que, em um período de 1 minuto, cheguem 3 chamadas durante os primeiros 10 segundos e 2 chamadas durante os últimos 15 segundos.;
 - b) Determine a média e a vari6ancia do tempo até a chegada da décima chamada.
- 3) Seja $\mathbf{X} = \{X_t; t \ge 0\}$ um processo de Poisson com taxa $\lambda = 15$. Calcule:
 - a) $P(X_6=9)$;
 - b) $P(X_6=9, X_{20}=13, X_{56}=27);$
 - c) $P(X_{20}=13 \mid X_6=9);$
 - d) $P(X_6 = 9 \mid X_{20} = 13)$.
- 4) Seja X={ X_t ; $t \ge 0$ } um processo de Poisson com taxa $\lambda = 2$. Calcule:
 - a) $\mathbf{E}(X_t) \in \mathbf{Var}(X_t)$;
 - b) $\mathbf{E}(X_{t+s} \mid X_t)$.
- 5) Suponha que as chegadas de passageiros em uma parada de ônibus seguem um processo de Poisson X, com taxa $\lambda = 1/3$ por minuto. Assuma que um ônibus partiu da parada no instante t = 0, não deixando nenhum passageiro para trás. Seja T o instante de chegada do próximo ônibus. Então o número de passageiros presentes quando ele chegar será X_t . Suponha que T tem distribuição Ψ .
 - a) Calcule $\mathbf{E}(X_T | T)$ e $\mathbf{E}(X_T^2 | T)$.
 - b) Calcule $\mathbf{E}(X_T)$ e $\mathbf{Var}(X_T)$ para $f_{\Psi} = \frac{1}{2}$, $9 \le t \le 11$.
- Uma loja promete dar um pequeno presente a cada 13º cliente que chegue à loja. Supondo que os clientes cheguem segundo um processo de Poisson com taxa λ ,
 - a) Encontre a f.d.p. do tempo entre chegadas de clientes que recebem presentes ;
 - Encontre $P(M_t = k)$ para o número de presentes dados pela loja no intervalo [0, t]
- Clientes chegam a uma loja segundo um processo de Poisson X com taxa $\lambda = 20$ por hora. Encontre o número esperado de vendas realizadas durante um dia de trabalho (a loja fica aberta 8 horas por dia), supondo que a probabilidade de um cliente comprar algo é 0,3.
- Para um processo de Poisson, mostre que, para 0<s<t,

$$P(X_s = k | X_t = n) = {n \choose k} {s \choose t}^k {1 - \frac{s}{t}}^{n-k}, k = 0, 1, 2, ..., n.$$

Considere o tráfego em uma estrada, conforme figura abaixo. Sabe-se que a quantidade de veículos passando pelo ponto A em uma hora segue uma distribuição de Poisson com média 60; 20% destes veículos são caminhões. O número de veículos passando pelo Ponto B em uma hora também segue uma distribuição de Poisson, possuindo média 80; 30% destes veículos são caminhões. Em geral, 10% de todos os veículos param no restaurante. O número de pessoas em um caminhão é um; o número de passageiros em um carro é igual a 1, 2, 3, 4, ou 5, com probabilidades 0,30; 0,30; 0,20; 0,10 e 0,10. Encontre o valor esperado do número de pessoas chegando no restaurante em uma hora (Z);

Universidade

Processos Estocásticos (EST020)

Prof. Lupércio F. Bessegato

	Restaurante		
		Α	
В			

- 10) Um dispositivo está sujeito a choques que ocorrem de acordo com um processo de Poisson \mathbf{X} , com taxa λ . O dispositivo pode falhar somente devido ao choque, e a probabilidade que um dado choque cause falha é p independente do número e dos tempos dos choques anteriores. Seja K o número total de choques que o dispositivo leva antes da falha, e seja $T=T_K$ o tempo da falha.
 - a) Calcule **E**(T) e **Var**(T);
 - b) Calcule $\mathbf{E}(T|K)$.
 - c) Calcule $\mathbf{E}(T \mid K>9)$.
- 11) Uma loja de departamentos tem três portas. As chegadas em cada porta seguem um processo de Poisson com taxas λ_1 =110, λ_2 =90, λ_3 =160 clientes por hora. 30% de todos os clientes são homens. A probabilidade que um cliente masculino compre algum produto é 0,80, sendo de 0,10 no caso das clientes femininas. Uma compra média é avaliada em \$4,50.
 - a) Qual é a média do total de vendas efetuadas em um dia de 10 horas;
 - b) Qual a probabilidade de que a 3ª cliente feminina a comprar algum produto, chegue durante os primeiros 15 minutos? Qual é o tempo esperado de sua chegada?
- 12) Clientes chegam em um banco de acordo com um processo de Poisson com taxa λ. Suponha que dois clientes cheguem durante a primeira hora. Qual é a probabilidade que:
 - a) Ambos tenham chegado durante os primeiros 20 minutos?
 - b) Pelo menos um tenha chegado durante os primeiros 20 minutos.
- 13) Admita que automáveis passem por determinado trecho de uma estrada de acordo a um processo de Poisson com taxa λ = 3 carro por minuto.
 - a) Suponha que uma pessoa decida atravessar esse mesmo trecho com os olhos vendados. Qual \sim e a probabilidade de ele conseguir escapar ileso, se a referida travessia demorar s segundos: Considere s = 2, 5, 10, 20.
 - b) Suponha agora que a mesma pessoa é suficientemente ágil para conseguir escapar ileso de um automóvel, não acontecendo o mesmo, se durante a travessia surgirem dois ou mais automóveis. Calcule a probabilidade de esta pessoa não ser ferida, caso a travessia demore *s* = 5, 10, 20, 30 segundos.
- 14) Em cada domingo, 15 unidades de um determinado produto são postas em estoque para venda no restante da semana. As encomendas desse produto ocorrem de acordo a um processo de Poisson de taxa igual a 3 unidades por dia. Note-se que uma encomenda não resulta numa venda caso não haja unidades em estoque. Admita ainda que devido à natureza do produto são destruídas em cada domingo todas as unidades que não tenham sido vendidas na semana anterior.
 - a) Calcule a probabilidade de não haver unidades para venda a partir das 0 horas de terça-feira;
 - b) Determine a probabilidade de terem sido vendidas todas as unidades em estoque até as 24 horas de sábado;
 - c) Obtenha a expressão do número esperado de unidades destruídas em cada semana.
- 15) Um certo produto é distribuído diariamente, mas a hora de sua chegada é uma variável aleatória com distribuição uniforme entre -1h e 2h (sendo zero a hora de abertura do supermercado). O processo de chegadas dos clientes ao supermercado é um processo de Poisson de taxa 20 (a unidade de tempo é a hora).
 - a) Sabendo que em cada 100 clientes, 60 pretendem adquirir o referido produto, calcule o número esperado de clientes não servidos diariamente devido ao produto não ter sido ainda distribuído;

Ainda no mesmo supermercado, vai realizar-se, num determinado dia, uma campanha que consiste em atriuir um prêmio a cada 20°. cliente que chegar.

- b) Qual é a distribuição do intervalo de tempo entre chegadas de clientes premiados?
- c) Sabendo que o supermercado está aberto entre as 9h e as 19h, indique a expressão que lhe permitiria calcular a probabilidade de ter-se que atribuir exatamente 10 prêmios;

UNIVERSIDADE FEDERAL DE LUIZ DE FORA

Processos Estocásticos (EST020)

Prof. Lupércio F. Bessegato

- d) Considere um processo {Y(t), t≥0}, em que Y(t) representa o número de clientes premiados no intervalo (0, t]. Será que Y(t) é um processo de Poisson? Justifique.
- 16) Automóveis passam em determinado ponto de uma estrada de acordo a um processo de Poisson de taxa $\lambda = 1$ automóvel por minuto. Considerando que a percentagem de Mercedes que circulam nessa estrada é de 5%, calcule:
 - a) A probabilidade de passar pelo menos uma Mercedes no período de uma hora;
 - b) O número esperado de automóveis que passaram no período de uma hora, sabendo que 10 deles eram Mercedes;
 - c) A probabilidade de terem passado 5 Mercedes ao fim de uma hora, sabendo que nesse período passaram 50 carros pelo referido ponto da estrada;
- 17) Seja, para t ≥ 0, X(t) o valor do total dos pr6emios pagos por uma companhia de seguros de vida no intervalo (0, t]. Os pagamentos de prêmios de seguros de vida são reclamados à companhia segundo um processo de Poisson de taxa 5 pagamentos por semana. Se os prêmios forem independentes e possuírem distribuição exponencial com valor esperado \$ 20.000, determine:
 - a) O valor esperado e a variância do valor total de prêmios pagos pela companhia num período de 4 semanas;
 - b) Cov (X(s), X(t)), com $0 \le s \le t$;