Estatística Aplicada à Medicina II

Lupércio F. Bessegato

UFJF – Departamento de Estatística 2013

1

Roteiro

- 1. Conceitos Fundamentais
- 2. Medida do Efeito: Resposta Contínua
- 3. Media do Efeito: Resposta Dicotômica
- 4. Aplicação
- 5. Considerações Finais

Medida do Efeito de uma Intervenção ou Exposição

Conceitos Fundamentais

Introdução

- Objetivo de estudos tipo caso-controle:
 - √ Verificar se grupo de pacientes com patologia de interesse foi mais (ou menos) exposto ao fator de risco em análise
 - √ Teste de hipóteses verifica **existência** do efeito
 - √ Como **medir** o efeito da exposição?
 - Abordagem, em muitos aspectos, mais completa e útil do que a vista anetriormente

Exemplo 7.1

- Níveis plasmáticos de vitamina A
 - √ Moura (1990) avaliou níveis plasmáticos de vitamina A em grupo de 47 crianças diabéticas com idade até 12 anos.
 - √ Objetivo do estudos:
 - Conhecer nível sanguíneo médio de vitamina A neste grupo
 - √ Estudo:
 - Qual a resposta?
 - Qual o parâmetro de interesse?

Parâmetro

- É uma característica populacional
 - $\sqrt{\text{Relaciona-se com a distribuição de probabilidades}}$ que modela a resposta de interesse
 - √ Raramente é conhecido
 - √ Tomada de decisão baseia-se no valor do parâmetro
- Em análise estatística de dados, deve-se inicialmente identificar os parâmetros de interesse

Teoria da Estimação

- Perguntas essenciais:
 - √ Como obter, a partir dos dados amostrais, valores que se aproximam do verdadeiro valor do parâmetro?
 - √ Como essas aproximações devem ser construídas de maneira a estarem próximas do valor do parâmetro?

Estimadores

- É uma função das observações usada para estimar um parâmetro populacional
 - √O valor do estimador em uma particular amostra chama-se estimativa.

Método da Máxima Verossimilhança

- Princípio:
 - √ Entre todas as amostras possíveis, aquela observada é a que tem maior probabilidade.
- Para uma amostra X₁, X₂, ..., X_n de população modelada pela distribuição gaussiana:

 $\sqrt{}$ Estimador de máxima verossimilhança da média:

$$\hat{\mu} = \bar{X}$$

 $\sqrt{}$ Estimador de máxima verossimilhança da variância:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}$$

- Exemplo 7.1 Nível de vitamina A
 - √ Se for razoável admitir que o nível sanguíneo de vitamina A tem distribuição gaussiana
 - $\sqrt{\text{Como encontrar estimativas de }\mu\text{ e }\sigma^2\text{ a partir dos dados da amostra?}}$
- A Teoria Estatística tem várias soluções para este problema
 - √ Método da máxima verossimilhança é o mais comum

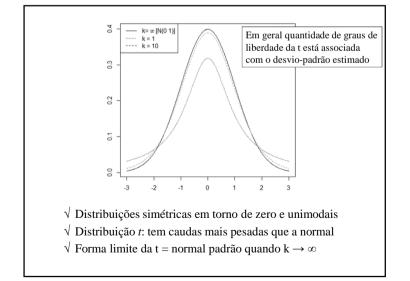
• Recomenda-se também como estimador de σ^2 :

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

- Esses estimadores são denominados **pontuais**.
 - $\sqrt{}$ Fornecem apenas o valor da estimativa da
 - √ São variáveis aleatórias
 - √ Sua variabilidade é utilizada na construção de intervalos de confiança

Intervalos de Confiança

- Estimação intervalar do parâmetro
 - √ Agrega à estimação pontual informação sobre a variabilidade da estimação
 - √ São determinados limites (inferior e superior) para a estimativa



Distribuição t

• Seja X₁, X₂, ..., X_n uma amostra aleatória proveniente de uma população normal, com média μ e variância σ^2 desconhecidas.

√ A variável aleatória

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \sim \mathbf{t}_{(n-1)}$$

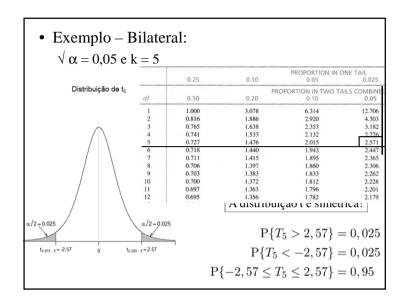
tem uma distribuição t com n-1 graus de liberdade.

 $\sqrt{\mathbf{S}}$ é o desvio-padrão amostral $S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$

- $t_{\alpha, k}$: Percentis da t $P\{T_k > t_{\alpha, k}\} = \alpha$
- Exemplo Unilateral

$$\sqrt{\alpha} = 0.05 \text{ e k} = 5$$

				PROPORTION IN	
		0.25	0.10	0.05	0.025
Distribuição de t ₅			PR	OPORTION IN TWO T	AILS COMBINE
, ,	df	0.50	0.20	0.10	0.05
	1	1.000	3.078	6.314	12.706
	2	0.816	1.886	2.920	4.303
	3	0.765	1.638	2.353	3.182
	4	0.741	1.533	2.132	2.776
/ \	5	0.727	1.476	2.015	2.571
/ \	6	0.718	1.440	1.943	2.447
/ \	7	0.711	1.415	1.895	2.365
/ \	8	0.706	1.397	1.860	2.306
/ \	9	0.703	1.383	1.833	2.262
/ \	10	0.700	1.372	1.812	2.228
/ \	11	0.697	1.363	1.796	2.201
/ \	12	0.695	1.356	1.782	2.179
015 0 \$0.00	α = 0.05	7	$P\{T_5 >$	$2,015$ } = 0	,05



Intervalo de Confiança para a Média

 Seja x̄ a média de amostra aleatória, de tamanho n, oriunda de população normal com variância σ² desconhecida

 $\sqrt{\text{Intervalo com }100(1-\alpha)\%}$ de confiança para μ :

$$\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$

√ IC é centrado na estimativa do efeito

 $\sqrt{\mbox{\sc Varia}}$ uma quantidade $t_{\alpha/2,n-1}$ desvios-padrão para baixo e para cima

Intervalo de Confiança t para μ

√ População normal e variância desconhecida

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

• Não depende dos parâmetros desconhecidos μ e σ !

Então

$$\Pr\left\{-t_{\alpha/2,n-1} \le \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \le t_{\alpha/2,n-1}\right\} = 1 - \alpha$$

sendo $t_{\alpha/2,\,(n-1)}$ o percentil superior com $\alpha/2(100)\%\,$ da t com n-1 graus de liberdade

logo

$$\Pr\left\{\bar{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} \le \mu \le \bar{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right\} = 1 - \alpha$$

Exemplo 7.2

• Níveis plasmáticos de vitamina S

√ Amostra com 47 crianças diabéticas com idade até 12 anos.

 $\sqrt{\text{Dados amostra:}}$ $\bar{x} = 25, 5 \text{ mcg/dL}$ s = 8, 5 mcg/dL $\sqrt{}$ Nível de confiança de 95% (5% bilateral) $\sqrt{}$ $t_{0,025;\,47-1}\!=2,\!0129$

$$\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$
$$25, 5 - 2, 0129 \frac{8, 5}{47} \le \mu \le 25, 5 - 2, 0129 \frac{8, 5}{47}$$
$$23 \operatorname{mcg/dL} \le \mu \le 2823 \operatorname{mcg/dL}$$

√ Podemos afirmar, com 95% de confiança, que o nível plasmático de vitamina A em crianças diabéticas com idade até 12 anos varia entre 23mcg/dL e 28 mcg/dL

Teorema Central do Limite – Simulação

Intervalo de Confiança – Interpretação

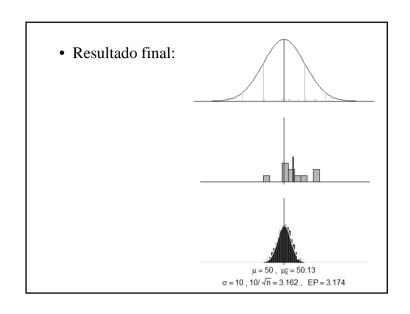
- O valor de μ é desconhecido:
 - \sqrt{A} afirmação $23 \leq \mu \leq 28$ é tanto correta quanto falsa
- Interpretação correta:
 - √ Um IC é um intervalo aleatório

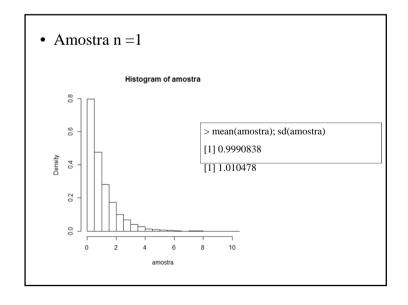
(os extremos são variáveis aleatórias)

- $\sqrt{\text{S}}$ ão construídos os intervalos com $(1-\alpha)$ 100% de confiança de um número infinito de amostras
- $\sqrt{(1-\alpha)}$ 100% desses intervalos conterão o valor verdadeiro de μ .

Exemplo 1

- Simulação
 - √Amostra de tamanho n=10 de população gaussiana de média m = 50 e desvio-padrão s=10
 - √ Cálculo média amostral
 - $\sqrt{1000}$ rodadas
 - √ Histograma, média e desvio-padrão das 1000 médias amostrais





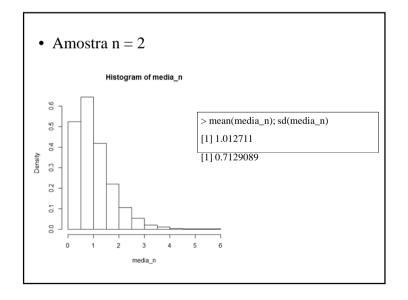
Exemplo – Simulação

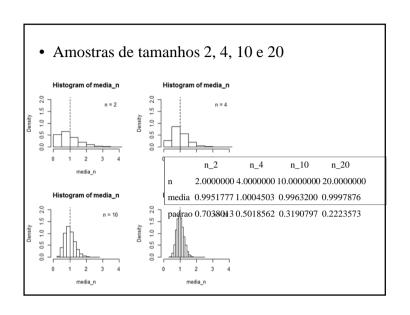
• População exponencial com média 1:

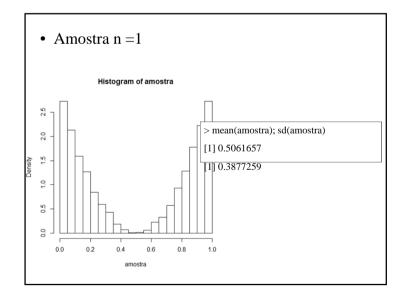
$$\sqrt{\lambda} = 1$$

 $\sqrt{\text{Geração}}$ de 10.000 valores dessa população

 $\sqrt{\text{Amostra de tamanho 1}}$ (n = 1)







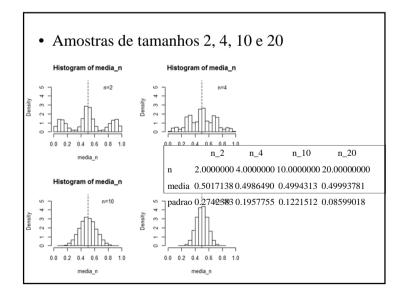
Exemplo - Simulação

• População com densidade em U:

$$\sqrt{f(x)} = 12 (x - 0.5)^2$$

 $\sqrt{\text{Geração}}$ de 10.000 valores dessa população

 $\sqrt{\text{Amostra de tamanho 1}}$ (n = 1)



Média Amostral

- Resultados teóricos:
 - √ Desvio-padrão da média amostral
 - √ Distribuição da média amostral
 - √ Distribuição da média amostral padronizada pelo desvio-padrão

Teorema Central do Limite

• Seja X_1 , X_2 , ..., X_n uma amostra aleatória de tamanho n de uma população (finita ou infinita), com média μ e variância finita σ^2 . Então

$$Z = \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

quando n $\rightarrow \infty$.

Parâmetros da Média Amostral

 Seja uma amostra aleatória X₁, X₂, ..., X_n de uma população qualquer

√ A média amostral é uma variável aleatória

√ Parâmetros da média amostral:

• Valor esperado: $\mathrm{E}[\bar{X}] = \mu$

• Variância: $\operatorname{Var}[\bar{X}] = \frac{\sigma^2}{n}$

• Erro padrão da média amostral:

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

• Comentários:

- √ A aproximação normal para a média amostral depende do tamanho da amostra
- $\sqrt{\text{Com população contínua, unimodal e simétrica, na}}$ maioria dos casos, o TCL trabalha bem para pequenas amostras (n = 4, 5).
- $\sqrt{}$ Em muitos casos de interesse prático, a aproximação normal será satisfatória para n ≥ 30
- $\sqrt{\text{Se n}} < 30$, o TCL funcionará se a distribuição da população não for muito diferente da normal

Média e Desvio-Padrão Amostral

• Supondo amostra de população normal

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \sim \mathbf{t}_{n-1}$$

- $\sqrt{\text{N}}$ ão depende dos parâmetros desconhecidos μ e σ !
- √ Valores de probabilidade da distribuição t são obtidos em tabelas e pacotes computacionais

Estimação do Efeito

- Objetivo:
 - √ Estimar o efeito de intervenção ou exposição
 - √ Variabilidade para os tipos de coleta
 - Amostras emparelhadas e independentes
- Tipos de reposta:
 - √ Contínua
 - √ Dicotômica

Medida do Efeito: Resposta Contínua

Efeito - Resposta Contínua

- Circunstância:
 - √ Resposta contínua
 - √ Pacientes divididos em dois grupos
 - √ Amostragem:
 - Grupos emparelhados ou independentes
- Síntese do comportamento em cada grupo:
 - √ Média aritmética dos valores da variável resposta
- Efeito da intervenção:
 - $\sqrt{\text{Diferença das médias das respostas dos grupos}}$

Amostras Pareadas

• Resposta:

 $\sqrt{X_1}$: variável resposta no grupo 1

 $\sqrt{X_2}$: variável resposta no grupo 2

• Dados amostrais:

√ Pares de observações:

$$(x_{11}, x_{12}), (x_{21}, x_{22}), ..., (x_{n1}, x_{n2}).$$

• Desvio-padrão das diferenças:

$$s_d = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n-1}}$$

 Intervalo de (1 – α)x100% de confiança do efeito médio populacional

$$\left[\bar{d} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}, \bar{d} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right]$$

 $\sqrt{t_{\alpha/2,\,(n-1)}}$: percentil superior de ordem $100(\alpha/2)\%$ da distribuição t com (n-1) graus de liberdade $\sqrt{1}$ Intervalo de confiança bilateral

• Efeito da intervenção na população:

$$\mu_d = \mu_1 - \mu_2$$
.

• Efeito da intervenção (em cada par):

$$d_1 = x_{11} - x_{12}$$

$$d_2 = x_{21} - x_{22}$$

$$\vdots$$

$$d_n = x_{n1} - x_{n2}$$

• Estimativa do efeito da intervenção na população:

$$\bar{d} = \bar{x}_1 - \bar{x}_2$$

Exemplo 7.3

- Avaliação de redução de pressão intraocular
 - √ Cronemberg e Calixto (1991) Estudo da capacidade de redução de pressão intraoculae das drogas:
 - Timolol
 - Betaxolol
 - Levobunolol

√ Amostra com 10 pacientes

√ Pacientes medicados com drogas, comparados com resultados obtidos por meio de placebo

• Pressão ocular de pacientes com placebo e timolol $\sqrt{\rm Medidas}$ de pressão intraocular às 6:00 (mmHg)

Grupo		Escores								
Placebo	22	25	23	18	24	24	17	23	22	23
Timolol	18	20	20	17	16	20	20	20	20	24
Efeito	-4	-5	-3	-1	-8	-4	3	-3	-2	1

√ Estimativa do efeito hipotensor médio do timolol

$$\bar{d} = -2.6 \text{ mmHg}$$

√ Desvio padrão das diferenças

$$s_d = 3,098 \text{ mmHg}$$

 Podemos afirmar com 95% de confiança que o timolol reduz a pressão ocular por uma quantidade que varia de 0,4 mmHg a 4,8mmHg

$$-4, 8 \le \mu_T - \mu_P \le -0, 4$$

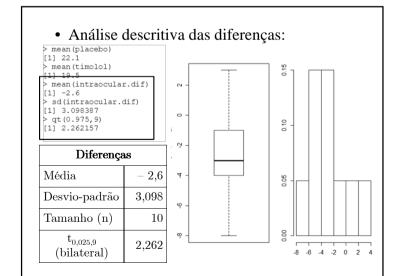
 \sqrt{O} IC obtido é equivalente a um teste de hipóteses t para dados pareados.

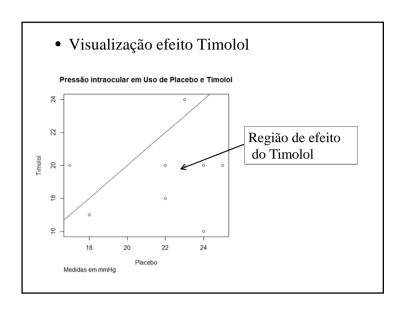
• Intervalo com 95% de confiança para o efeito hipotensor médio populacional do timolol

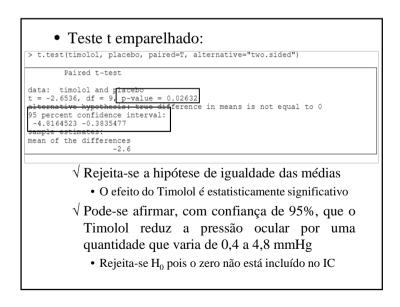
$$\sqrt{n} = 10$$

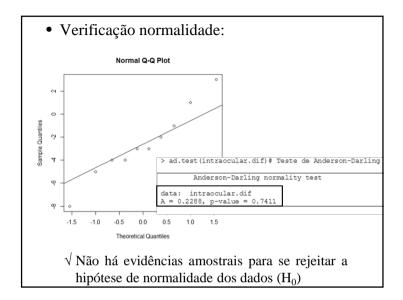
$$\sqrt{t_{0.025 \cdot 9}} = 2,262 \text{ (5\% bilateral)}$$

$$\begin{bmatrix} \bar{d} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}, \bar{d} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \end{bmatrix}$$
$$\begin{bmatrix} -2, 6 - (2, 262) \frac{3,098}{\sqrt{10}}, -2, 6 + (2, 262) \frac{3,098}{\sqrt{10}} \end{bmatrix}$$
$$\begin{bmatrix} -4, 8, -0, 4 \end{bmatrix}$$



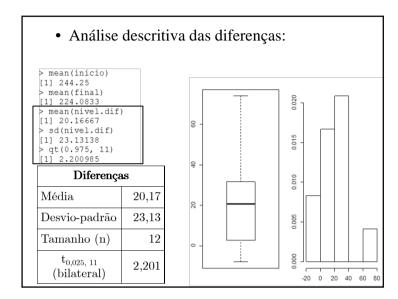






Exemplo 6.12 (Continuação)

- Programa para redução do nível de colesterol:
 - √ Estudo com objetivo de avaliar efetividade de dieta combinada com programa de exercícios
 - √ Amostra com 12 indivíduos
 - Nível colesterol medido no início e no final do programa



• Intervalo com 95% de confiança para o efeito do para redução do nível de colesterol

 $\sqrt{n} = 12$

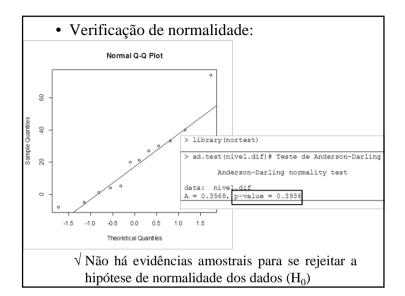
$$\sqrt{t_{0,025;\,11}} = 2,201 \text{ (5\% bilateral)}$$

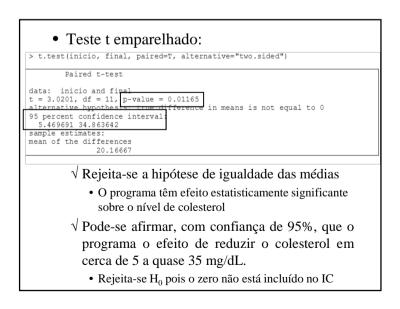
$$\left[\bar{d} - t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}, \, \bar{d} + t_{\alpha/2,n-1} \frac{s}{\sqrt{n}} \right]$$

$$\left[-20,17 - (2,201) \frac{23,13}{\sqrt{12}}, \, -20,17 + (2,201) \frac{23,13}{\sqrt{12}} \right]$$

$$\left[5,47,34,87 \right]$$

 $\sqrt{\text{Com 95}\%}$ de confiança, diz-se que o programa tem o efeito de reduzir o colesterol em cerca de 5 a quase 35 mg/dL.





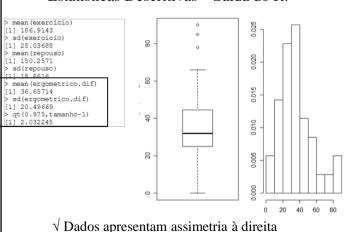
Exemplo

- (Miller *et al.*) Pressão sistólica de pacientes com doença arterial coronariana
 - √ Amostra com 35 pacientes, com idades entre 35 e 75 anos
 - √ Paciente submetidos a teste ergométrico, com exercícios continuando até angina ou fadiga
 - √ Tempo médio de duração do exercício: 716 s
 - √ Medição de pressão em repouso e no pico do exercício (mmHg)

- Análise descritiva dos dados
 - √ Pressão sistólica (mmHg) em repouso e no pico do exercício

${\it Press\~ao} \; {\it sist\'olica} \; (mmHg)$							
	N	Média	D.Padrão				
Exercício	35	186,91	25,04				
Repouso	35	150,26	18,66				
Diferença	35	36,66	20,50				
$t_{0,025,\ 11}({\rm bilateral})$		2,032					

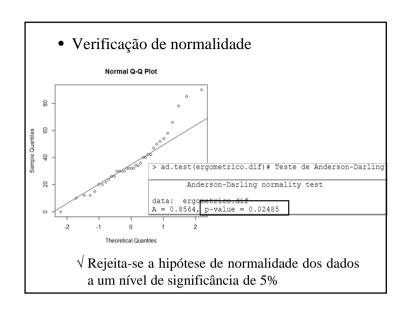
• Estatísticas Descritivas – Saída do R:



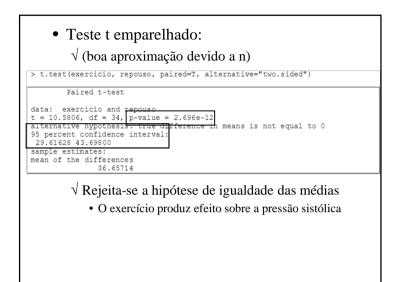
• Intervalo com 95% de confiança para o efeito do exercício sobre a pressão sistólica

$$\sqrt{n} = 35$$
 $\sqrt{t_{0.025; 9}} = 2,032 (5\% \text{ bilateral})$

$$\begin{split} \left[\bar{d} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \,,\, \bar{d} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \right] \\ \left[-36, 66 - (2, 032) \frac{20, 50}{\sqrt{35}} \,,\, 36, 66 + (2, 032) \frac{20, 50}{\sqrt{35}} \right] \\ \left[29, 62, 43, 70 \right] \end{split}$$



- √ Pode-se quantificar o efeito do exercício sobre a pressão
 - Com 95% de confiança, conclui-se que houve elevação estatisticamente significante, que pode variar de cerca de 30 a 44 mmHg



Exemplo

• Estudo sobre uso de hipertensivo pelo período de seis meses

√ Amostra: 15 animais

 $\sqrt{\text{Dados amostrais:}}$ $\bar{d} = 8,80$

 $s_d = 10.98$

√ Qual o efeito do coeficiente de confiança no comprimento do intervalo de confiança?

- Comparação médias Teste t emparelhado
 - Cálculo estatística T_{obs}:

$$t_{p_{obs}} = \frac{8,80}{\frac{10,98}{\sqrt{15}}} = 3,10$$

• Determinação p-valor:

$$p = 2 \times \Pr \{T_{14} > |3, 10|\} = 0.008$$

 Há evidências amostrais que sustentam a rejeição de H0, indicando a efetividade do hipertensivo

• Intervalo com 95% de confiança para o efeito do hipertensivo sobre a pressão arterial

$$\sqrt{n} = 15$$

 $\sqrt{t_{0.025 \cdot 14}} = 2,145 (5\% bilateral)$

$$\left[\bar{d} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}, \bar{d} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right]$$

$$\left[8, 80 - (2, 145) \frac{10, 98}{\sqrt{15}}, 8, 80 + (2, 145) \frac{10, 98}{\sqrt{15}}\right]$$

$$\left[2, 72, 14, 88\right]$$

• Intervalo com 90% de confiança para o efeito do hipertensivo sobre a pressão arterial

$$\sqrt{n} = 15$$

 $\sqrt{t_{0.05:14}} = 1,761 (10\% bilateral)$

$$\left[\bar{d} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}, \bar{d} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right]$$

$$\left[8, 80 - (1, 761) \frac{10, 98}{\sqrt{15}}, 8, 80 + (1, 761) \frac{10, 98}{\sqrt{15}}\right]$$

$$\left[3, 81, 13, 79\right]$$

• Intervalo com 99% de confiança para o efeito do hipertensivo sobre a pressão arterial

$$\sqrt{n} = 15$$

$$\sqrt{t_{0.005; 14}} = 2,719 (1\% \text{ bilateral})$$

$$\left[\bar{d} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}, \bar{d} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right]$$

$$\left[8, 80 - (2, 719) \frac{10, 98}{\sqrt{15}}, 8, 80 + (2, 719) \frac{10, 98}{\sqrt{15}}\right]$$

$$\left[0, 36, 17, 24\right]$$

• Resumo dos resultados:

Coeficiente de confiança	$t_{\alpha/2,14}$	$IC~para~(\mu_a-\mu_d)$	Amplitude do IC
90%	1,761	(3,81; 13,79)	9,98
95%	2,719	(2,72; 14,88)	12,16
99%	2,977	(0,36; 17,24)	16,88

- $\sqrt{\dot{A}}$ medida que o nível de confiança aumenta, a amplitude do IC também aumenta
 - Precisão diminui
- √ Tamanho amostral maior implica aumento de confiança e de precisão

• Efeito da intervenção na população:

$$\mu_d=\mu_1-\mu_2.$$

• Estimativa do efeito da intervenção:

$$\hat{\mu}_d = \bar{x}_1 - \bar{x}_2$$

- Estimativa variância populacional:
 - √ Modelo supõe homocedasticidade

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Amostras independentes

• Resposta:

 $\sqrt{X_1}$: variável resposta no grupo 1

 $\sqrt{X_2}$: variável resposta no grupo 2

• Dados amostrais:

√ Amostra do grupo 1:

$$(x_{11}, x_{21}, ..., x_{n1,1})$$

√ Amostra do grupo 2:

$$(x_{12}, x_{22}, ..., x_{n2,2})$$

• Intervalo de $(1 - \alpha)x100\%$ de confiança do efeito médio populacional

$$\left[(\bar{x}_1 - \bar{x}_2) - t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}; (\bar{x}_1 - \bar{x}_2) + t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right]$$

 $\sqrt{t^*=t_{\alpha/2,\,(n^1+n^2-2)}}$: percentil superior de ordem $100(\alpha/2)\%$ da distribuição t com (n_1+n_2-2) graus de liberdade

√ Intervalo de confiança bilateral

Exemplo 7.4

- Comparação de tianeptina com placebo
- (continuação Exemplo 6.9)
 - √ Ensaio clínico aleatorizado, duplo-cego
 - √ Pacientes de Belo Horizonte, Rio e Campinas
 - √ Quantificação depressão:
 - escala de Montgomery-Asberg (MADRS)
 - $\sqrt{\text{Escores obtidos para cada paciente:}}$
 - 7, 14, 21, 28 e 42 dias após início do ensaio

• Escore final na escala MADRS

√ Pacientes dos dois grupos, admitidos em BH

Grupo	Escores							
Placebo	6	33	21	26	10	29	33	29
	37	15	2	21	7	26	13	
Tianeptina	10	8	17	4	17	14	9	4
	21	3	7	10	29	13	14	2

• Valores observados na amostra

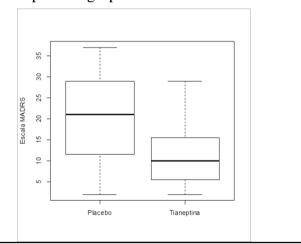
	Placebo			Tianeptina		
$\mathbf{n_1}$	$\overline{\mathbf{x}}_{1}$	\mathbf{s}_1	$\mathbf{n_2}$	$\overline{\mathbf{x}}_2$	\mathbf{s}_2	
15	20,53	11,09	16	11,37	7,26	

• Classificação da escala MADRS:

Score	Classificação
Zero a 6	Ausência de depressão
7 a 19	Depressão leve
20 a 34	Depressão moderada
35 a 60	Depressão grave

- √ Um escore não tem teoricamente a distribuição normal, pois, **não** é uma variável contínua
- √ Recomenda-se teste de normalidade para verificar a razoabilidade desse pressuposto

• Box-plot dos grupos



• Estimativa do efeito da droga:

$$\hat{\mu}_d = \bar{x}_1 - \bar{x}_2 = 20,53 - 11,37 = 9,16$$

• Estimativa da variância populacional √ Supostas iguais entre os grupos

$$s_p^2 = \frac{(15-1)(11,09)^2 + (16-1)(7,26)^2}{15+16-2} = (9,31)^2$$

• $t^* = t_{0,05/2,(15+16-2)} = t_{0,025;29} = 2,0452$

• Teste t – amostras independentes:

√ Supondo variâncias iguais

Two Sample t-test

data: escores by grupos t = 2.7383, df = 29, p-value = 0.01045

alternative hypothesis: true difference in means is not equal to 95 percent confidence interval:

2.317903 15.998764

mean in group Placebo mean in group Tianeptina 20.53333 11.37500

√ Ao nível de significância de 5% rejeita-se a hipótese de igualdade dos grupos

• Em média, há diferença entre os grupos

 Intervalo com 95% de confiança para o efeito populacional μ₁ – μ₂:

$$(\bar{x}_1 - \bar{x}_2) \pm t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} =$$

$$(20, 53 - 11, 37) \pm (2, 0452)(9, 31) \sqrt{\frac{1}{15} + \frac{1}{16}} =$$

$$9, 16 \pm 6, 84$$

 $\sqrt{IC} = [2,32; 16,00]$

 \sqrt{O} zero não está incluído no intervalo.

• Qual conclusão?

 \sqrt{A} amplitude tem sentido?

• Conclusões:

√ Há evidência sobre a eficácia da tianeptina como antidepressivo

• Redução de 2 a 16 unidades da escala MADRS

 $\sqrt{\text{Medidas com grande variabilidade}}$

Exemplo

- Comparação de nível sérico de ferro (µmol/L)
 √ Grupos:
 - Controle: 9 crianças sadias
 - Caso: 13 crianças com fibrose cística
- Valores observados na amostra:

	Controle			Fibrose cística		
$\mathbf{n_1}$	$\overline{\mathbf{x}}_{1}$	\mathbf{s}_1	$\mathbf{n_2}$	$\overline{\mathbf{x}}_2$	\mathbf{s}_2	
9	17,751	5,044	13	9,175	6,377	

 Intervalo com 95% de confiança para o efeito populacional μ₁ – μ₂:

$$(\bar{x}_1 - \bar{x}_2) \pm t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} =$$

$$(18,751 - 9,175) \pm (2,086)(5,880) \sqrt{\frac{1}{9} + \frac{1}{13}} =$$

$$8,576 \pm 5,319$$

$$\sqrt{IC} = [3,257; 13,895]$$

√ O zero não está incluído no intervalo.

• Qual conclusão?

• Estimativa do efeito da droga:

$$\hat{\mu}_d = \bar{x}_1 - \bar{x}_2 = 18, 9 - 11, 9 = 7, 0$$

- √ Estimativa pontual da redução de nível ´serico de ferro em crianças com fibrose cística
- Estimativa da variância populacional

 $\sqrt{\text{Supostas iguais entre os grupos}}$

$$s_p^2 = \frac{(9-1)(5,044)^2 + (13-1)(6,377)^2}{9+13-2} = (5,880)^2$$

• $t^* = t_{0.05/2, (9+13-2)} = t_{0.025; 20} = 2,086$

• Saída R:

√ Homogeneidade das variâncias:

> var.test(Fe~grupo)

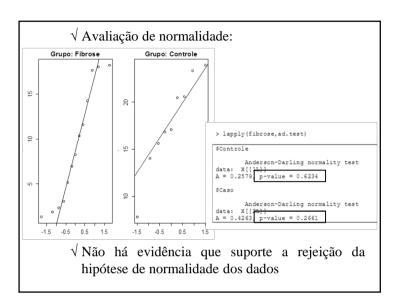
F test to compare two variances

data: Fe by grupo
F = 0.6255, num df = 8, denom df = 12, p-value = 0.5147
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1781086 2.6267986
sample estimates:
ratio of variances
0.6254778

> leveneTest(Fe~grupo)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Fr(FF)
group 1 1.26 0.2735

√ Não há evidências amostrais para se rejeitar a hipótese de homocedasticidade.



• Conclusões:

- √ A diferença entre o nível sérico de crianças sadias e o de crianças com fibrose cística é significante.
- √ Com 95% de confiança, pode-se afirmar que, em relação a crianças sadias, a redução média do nível sérico de ferro em crianças com fibrose cística varia de 3,26 a 13,90 μmol/L.

• Teste t e intervalo com 95% de confiança:

> t.test(Fe~grupo, alternative="two.sided", var.equal = T)

Two Sample t-test

data: Fe by grupo
t = 3.3633, df = 20, p-value = 0.003092
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
3.256947 13.894506
sample estimates:
mean in group Controle mean in group Caso
17.751111 9.175385

- √ Ao nível de significância de 5% rejeita-se a hipótese de igualdade dos grupos
 - Em média, há diferença entre os grupos

Medida do Efeito - Amostras Grandes

Intervalo de Confiança para a Diferença de Médias – Amostras Grandes

- Nem sempre a suposição de homocedasticidade é válida
 - $\sqrt{\text{Para o caso em que as } \mathbf{amostras } \mathbf{são grandes},}$ pode-se **aproximar** o intervalo de (1 a)100% de confiança para a diferença de médias $\mu_1 \mu_2$ por:

$$\left[(\bar{x}_1 - \bar{x}_2) - z^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}; (\bar{x}_1 - \bar{x}_2) + z^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right]$$

 $\sqrt{z^*} = z_{\alpha/2}$: percentil superior de ordem 100($\alpha/2$)% da distribuição normal padrão

$$\Pr\{-z^* \le Z \le z^*\} = 1 - \alpha$$

• Resultados amostrais:

	Halotano			Morfina		
•	$\mathbf{n_1}$	$\overline{\mathbf{x}}_{1}$	\mathbf{s}_1	$\mathbf{n_2}$	$\overline{\mathbf{x}}_{2}$	$\mathbf{s_2}$
•	61	66,9	12,2	61	73,2	14,4

• Estimativa do efeito do halotano em comparação com a morfina:

$$\hat{\mu}_d = \bar{x}_1 - \bar{x}_2 = 66, 9 - 73, 2 = -6, 3$$

√ Estimativa pontual da redução da pressão arterial de pacientes que utilizaram o halotano como anestésico, em comparação com aqueles que utilizaram a morfina

Exemplo 6.11

• Efeito do halotano em cirurgias cardíacas:

(continuação Exemplo 6.11)

√ Tratamentos:

- Morfina: pequeno efeito sobre atividade cardíaca
- Halotano: gás anestésico de inalação

 $\sqrt{\text{Possíveis efeitos colaterais:}}$

- Depressão do sistema respiratório e cardiovascular, sensibilização a arritmias, lesões hepáticas
- √ Estudo comparativos destes agentes anestésicos
 - Pacientes alocados aleatoriamente a cada grupo
 - Efeitos dos dois tratamentos na pressão sanguínea são iguais?

- $z^* = z_{0.05/2} = 1,96$
- Intervalo com 95% de confiança para o efeito populacional μ₁ – μ₂:

$$(\bar{x}_1 - \bar{x}_2) \pm z^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} =$$

$$(66, 9 - 73, 2) \pm 1,96 \sqrt{\frac{(12, 2)^2}{61} + \frac{(14, 4)^2}{61}} =$$

$$6,30 \pm 4,74$$

 $\sqrt{IC} = [1,56; 11,04]$

 \sqrt{O} zero não está incluído no intervalo.

• Qual conclusão?

- Conclusões:
 - √ Existe diferença significativa em relação à pressão arterial entre os dois tipos de anestésicos
 - Média do grupo halotano ficou mais baixa
 - √ Com 95% de confiança, estima-se que a diferença das médias dos dois grupos varia de cerca de 2 a 11 mmHg

Exemplo 7.5

- Efeito preventivo da aspirina
 - √ Ensaio clínico aleatorizado duplo-cego
 - $\sqrt{325}$ mg de aspirina em dias alternados
 - √ Amostra:
 - 22.071 médicos americanos com idades de 40 a 84 anos
 - Sem histórico de infarto do miocárdio, AVC ou ataque isquêmico transitório
 - Não usavam regularmente aspirina
 - Não apresentavam contra-indicações ao seu uso
 - √ Tempo médio de seguimento: 57 meses

Intervalo de Confiança para a Diferença de Proporções – Amostras Grandes

- É comum comparar dois grupos em termos da diferença de duas proporções (p₁ e p₂)
 - $\sqrt{\text{Para o caso em que as } \mathbf{amostras são grandes}}$, pode-se $\mathbf{aproximar}$ o intervalo de (1-a)100% de confiança para a diferença de médias $p_1 p_2$ por:

$$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

√ Se o intervalo contiver o zero, não há evidência de diferença significativa entre os grupos comparados

• Frequências observadas no estudos de coortes:

Infartos	Fator de	Total	
illiaitos	Aspirina	Placebo	Total
Presente	139	239	378
Ausente	10.898	10.795	21.693
Total	11.037	11.034	22.071

• Estimativas pontuais das proporções

$$\hat{p}_P = \frac{239}{11.034} = 0,0217$$

$$\hat{p}_A = \frac{139}{11.937} = 0,0126$$

$$\hat{p}_P - \hat{p}_A = 0,0091$$

• Estimativa do erro-padrão da diferença entre as proporções

$$\widehat{EP}_{\hat{p}_P - \hat{p}_A} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= \sqrt{\frac{0.0217(1 - 0.0217)}{11.034} + \frac{0.0126(1 - 0.0126)}{11.037}}$$

$$= 0.0017$$

• Saída R – Teste exato:

• Intervalo de 95% de confiança para ln(RR):

$$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$
$$(\hat{p}_P - \hat{p}_A) \pm \widehat{EP}_{\hat{p}_P - \hat{p}_A}$$

$$0,0123 \pm 1,96(0,0017);$$

 $0,0123 \pm 0,0033$

$$[0,0090;0,0156] = [0,90\%;1,56\%]$$

Intervalo não contém o zero
 √ Há evidência de diferença entre os dois grupos

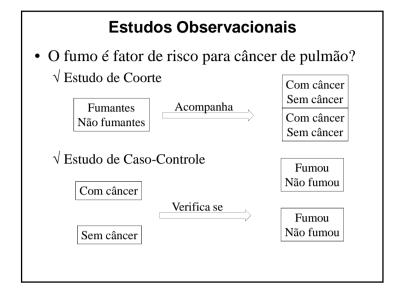
Organização Pesquisa Médica

Tipos de Estudos

- Estudo Descritivo
- Estudo Caso-controle
- Estudo Tipo Coorte
- Ensaio Clínico Aleatorizado

Estudos Caso - Controle

- Grupo Caso:
 - √ Indivíduos selecionados por serem doentes
- Grupo Controle:
 - √ Indivíduos selecionados por serem sadios
- Objetivo:
 - √ Comparar diferenças significativas entre os grupos, em relação a um dado fator de risco (terapia, etc.)



• O pesquisador conclui que há **associação** entre a doença e o fator de risco (ou de proteção), se houver incidência **significativa** de que o fator está presente (ausente) mais frequentemente entre os casos de que entre os controles

Características

- Levantamento da história clínica dos indivíduos
- Se o fator de risco é mais frequente (ou em nível mais elevado) entre os casos que entre os controles:
 - $\sqrt{\text{Determinar associação entre o fator de risco e a doença}}$

• Ideal que os casos tenham ocorrido período de tempo bem determinado e em uma população bem definida

Grupos de Casos e Controles

- Grupos emparelhados:
 - √ Para cada caso, são escolhidos um ou mais controles semelhantes
- Grupos independentes:
 - $\sqrt{\, {
 m Os}\,}$ controles não são associados a um caso específico
 - √ Garante-se apenas que o grupo de casos seja parecido, como um todo com o grupo de controle

Características

- São muito utilizados
- São forma simples e eficiente de pesquisa
 - √ Tempo e custos envolvidos são geralmente baixos (dados pré-existentes)
 - $\sqrt{\text{N}}$ ão há dificuldades éticas para sua implementação
 - √ São usados dados de seres humanos

Limitações

- Vícios de seleção:
 - √ Erros no processo de identificação da população
 - √ Preferência na seleção de indivíduos em função de caso ou controle, ou por estar ou não exposto aos fatores de risco
 - √ Vícios de participação

Estudos de Coorte

- Coorte:
 - $\sqrt{\text{Grupo de pessoas com algumas características em comum}}$
- Objetivo:
 - $\sqrt{\text{Verificar o desenvolvimento de doença}}$
 - √ Comparação entre grupo de indivíduos expostos e não expostos a fator de risco
- Avança no tempo (estudo longitudinal)
- Enfatiza o fator de risco

Limitações

- Vícios de informação:
 - √ Erros de mensuração de informações
 - √ Diferenças de precisão das informações para diferentes grupos

Estudos de Coorte

• Se as taxas de incidência de doença são significativamente diferentes entre os dois grupos, o pesquisador conclui que há **associação** entre a doença e o fator

Procedimento

- Identificam-se o grupo exposto ao fator de risco e o grupo controle
- Acompanham-se os dois grupos ao longo do tempo
- Calculam-se a taxa de incidência da doença
- Se as taxas forem significativamente diferentes, há evidências de associação entre a doença e o fator

Outras Características

- Normalmente são estudos grandes, longos e caros
- Quanto mais rara a doença estudada, maior a amostra
- São menos comuns que os estudos casocontrole

Vantagens

- Pode-se adotar critérios uniformes
 - √ Para identificação de presença do fator de risco
 - √ Verificação da ocorrência da doença nos exames de acompanhamento
- Maior liberdade sobre o que medir e como medir
 - √ Estudo não se limita a dados já coletados

Medida do Efeito: Resposta Dicotômica – Amostras Independentes

Resposta Dicotômica

- Variável resposta pode ser dicotômica em qualquer tipo de estudo clínico
 - √ Tipo padrão de resposta em estudos caso-controle
 - √ Usado em muitos estudos de coorte

• Proporções em estudos caso-controle e coorte

Doonas	Fator de l	Total	
Doença	Presente	Ausente	Total
Presente	pP_1	qP_{θ}	$pP_1 + qP_\theta$
Ausente	pQ_1	qP_{θ}	$pQ_1 + qQ_0$
Total	p	q	1

- Em um estudo de coortes, as proporções p e q=1 - q indicam simplesmente o tamanho relativo das coortes de estudo
- Proporção dos que desenvolveram a doença:
 - P₁: entre os pacientes expostos
 - P₀: entre os pacientes não expostos

- Comparações de respostas:
 - √ Médias: diferenças
 - √ Proporções diferenças ou razão entre elas
- Para tamanho amostrais fixos, a diferença entre proporções tem impactos distintos quando estão próximas de zero ou de 0,5
 - $\sqrt{\text{Diferença entre } 0.010 \text{ e } 0.001 = 0.009}$
 - $\sqrt{\text{Diferença entre } 0,410 \text{ e } 0,401 = 0,009}$
 - $\sqrt{\text{Razão entre } 0.010 \text{ e } 0.001 = 10}$
 - $\sqrt{\text{Razão entre } 0,410 \text{ e } 0,401 = 1,02}$
 - √ No primeiro caso a diferença é pouco informativa

• Exemplo:

$$\sqrt{P_1} = 0.20$$
; $P_0 = 0.10$ e $p = 0.4$

Doomaa	Fator de l	Total	
Doença	Presente	Ausente	Total
Presente	$pP_1 = 0.08$	$qP_{\theta} = 0.06$	0,14
Ausente	$pQ_1 = 0.32$	$qP_{\theta} = 0.54$	0,86
Total	p = 0.4	q = 0.6	1

Risco

- Medida do efeito de exposição ao fator:
 - $\sqrt{\text{No}}$ estudo de coorte é bastante natural pensar na razão de P_1 e P_0 .
- Risco:
 - √ Probabilidade que tem um indivíduo (ou grupo de indivíduos) de apresentar no futuro um dano em sua saúde

• Frequências em estudos caso-controle e coorte

Doomoo	Fator de	T-4-1	
Doença	Presente	Ausente	Total
Presente	a	b	a + b
Ausente	c	d	c+d
Total	a + c	b+d	$n_1 + n_2$

• Estimação pontual do risco relativo

$$\hat{RR} = \frac{\hat{P}_1}{\hat{P}_0} = \frac{\frac{a}{a+c}}{\frac{b}{b+d}}$$

Risco Relativo

• Definição:

 $\sqrt{\text{Raz}}$ ão entre a probabilidade de ocorrência de doença no grupo exposto ao fator de risco (P_1) e a probabilidade de ocorrência da doença no grupo não-exposto (P_0)

$$RR = \frac{P_1}{P_0}$$

Intervalo de Confiança para o Risco Relativo (RR)

- A variância do estimador de RR é mais facilmente calculada na escala logarítmica √ln(RR) ~ Normal
- Intervalo de $(1-\alpha)100\%$ de confiança para ln(RR)

$$\left[\ln \hat{RR} - z^* \sqrt{\frac{1 - \hat{P}_1}{n_1 \hat{P}_1} + \frac{1 - \hat{P}_0}{n_0 \hat{P}_0}}; \ln \hat{RR} + z^* \sqrt{\frac{1 - \hat{P}_1}{n_1 \hat{P}_1} + \frac{1 - \hat{P}_0}{n_0 \hat{P}_0}}\right]$$

 $\sqrt{z^*}=z_{\alpha/2}$: percentil superior de ordem 100($\alpha/2$)% da distribuição normal padrão

$$\Pr\{-z^* \le Z \le z^*\} = 1 - \alpha$$

Exemplo 7.5 – Outra Abordagem

- Efeito preventivo da aspirina
 - √ Ensaio clínico aleatorizado duplo-cego
 - $\sqrt{325}$ mg de aspirina em dias alternados
 - √ Amostra:
 - 22.071 médicos americanos com idades de 40 a 84 anos
 - Sem histórico de infarto do miocárdio, AVC ou ataque isquêmico transitório
 - Não usavam regularmente aspirina
 - Não apresentavam contra-indicações ao seu uso
 - √ Tempo médio de seguimento: 57 meses

- Conclusão:
 - √ O risco dos que tomavam aspirina regularmente é 59% do risco dos que não tomavam
 - √ O risco de quem não toma a droga é 1,72 vezes maior que o dos usuários

• Frequências observadas no estudos de coortes:

Infartos	Fator de	Total	
miartos	Aspirina	Placebo	Total
Presente	139 239		378
Ausente	10.898	10.795	21.693
Total	11.037	11.034	22.071

• Estimação pontual do risco relativo

$$\hat{P}_{1} = \frac{139}{11.937} = 0,0126$$

$$\hat{P}_{0} = \frac{239}{11.034} = 0,0217$$

$$\hat{R}R = \frac{\hat{P}_{1}}{\hat{P}_{0}} = \frac{0,0126}{0,0217} = 0,581$$

$$\hat{P}_{1} = \frac{0,022}{0,013} = 1,72$$

• Intervalo de 95% de confiança para ln(RR):

$$\left[\ln \hat{R} - z^* \sqrt{\frac{1 - \hat{P}_1}{n_1 \hat{P}_1} + \frac{1 - \hat{P}_0}{n_0 \hat{P}_0}}; \ln \hat{R} + z^* \sqrt{\frac{1 - \hat{P}_1}{n_1 \hat{P}_1} + \frac{1 - \hat{P}_0}{n_0 \hat{P}_0}} \right]$$

$$\ln(1, 72) \pm 1,96 \sqrt{\frac{1 - 0,0126}{11937(0,0126)} + \frac{1 - 0,0217}{11034(0,0217)}};$$

$$0,5423 \pm 0,2023$$

$$[0,340; 0,746]$$

• Intervalo de 95% de confiança para RR

$$[e^{0,340}; e^{0,746}]$$

[1,405; 2,109]

• Saída R:

√ Função desenvolvida por Avril Coghlan

```
> print(aspirina)
Infarto Controle
Aspirina 239 10795
Placebo 139 10898
> calcRelativeRisk(aspirina, alpha=0.05)
[1] "category = Aspirina , relative risk = 1.7199"
[1] "category = Aspirina , 95 % confidence interval = [ 1.3978 , 2.1163 ]"
```

- RR é usado em estudos de coorte
 - √ Compara quem desenvolve a doença nos grupos expostos e não-expostos ao fator de risco
- RR não pode ser estimada em estudos do tipo caso-controle:
 - √ São a forma mais frequente de estudo
 - √ As incidências observadas não são aleatórias
 - São consequência do número escolhido de casos e controles
 - √ Compara proporção de expostos a fator de risco entre grupos caso (com dano/doença) e controle (sem dano/doença)

Risco Relativo - Interpretação

- RR = 1 (Ausência de risco)
 - √ Não há associação
 - Probabilidade de ocorrência da doença é a mesma nos dois grupos
- RR > 1 (Fator de risco)
 - √ Probabilidade de ocorrência da doença é maior para o grupo exposto
- RR < 1 (Fator de proteção)
 - √ Probabilidade de ocorrência da doença é menor para o grupo exposto

Chances

- A chance contra a ocorrência do evento A é a razão P(A) /P(A^c), comumente expressa na forma a:b (ou 'a para b'), com a e b inteiros.
- A **chance a favor** do evento A é o <u>inverso</u> da chance contra aquele evento, b:a (ou 'b para a')

Chances 1 - poddsInterpretação р $\frac{0,50}{0,50} = 1$ A probabilidade de ocorrência do evento 0,50 0.50é igual à da não ocorrência A probabilidade de ocorrência do evento 0,25 0.75é o triplo à de não ocorrência $\frac{0,80}{0,20} = 4$ A probabilidade de ocorrência do evento 0,20 0,80 é o quádruplo à de não ocorrência A probabilidade de ocorrência do evento $0,80 \quad \frac{0,20}{0,80} = 0,25$ 0,20 é ¼ à de não ocorrência

$odds = \frac{p}{1 - p} = 1$

 \sqrt{p} : probabilidade de um evento ocorrer

Razão das Chances

 Razão entre a chance de ocorrência de doença em indivíduos expostos ao fator de risco e a chance de ocorrência da doença em indivíduos não-expostos

$$\psi = \frac{\frac{P_1}{Q_1}}{\frac{P_0}{Q_0}} = \frac{P_1 Q_0}{P_0 Q_1}$$

 $\sqrt{\Psi}$ também é denotada por OR (odds ratio)

Chances

- Chance de desenvolver a doença entre expostos: $\frac{P_1}{Q}$
- Chance de desenvolver a doença entre não expostos:

$$\frac{P_0}{Q_0}$$

• Frequências em estudos caso-controle e coorte

Doomoo	Fator de	T-4-1	
Doença	Presente	Ausente	Total
Presente	a	b	a + b
Ausente	c	d	c+d
Total	a + c	b+d	$n_1 + n_2$

- Ψ é o parâmetro de interesse para análise de tabelas 2x2
- Estimativa pontual de Ψ : $\hat{\psi} = \frac{\frac{a/(a+c)}{c/(a+c)}}{\frac{b/(b+d)}{d/(b+d)}} = \frac{ad}{bc}$

Interpretação

- $\psi = 1$
 - √ Exposição ao fator de risco não tem efeito na probabilidade de ocorrência da doença
- O valor de ψ se aproxima do RR quando P(D+|F+) e P(D+|F-) são pequenas
 - √ taxas de incidência da doença nos grupos expostos e não-expostos são pequenas (doenças raras)

• A variação de $\overset{\wedge}{\Psi}$ é mais facilmente calculada na escala logarítmica

$$Var[\ln \hat{\psi}] = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

- $\ln \overset{\wedge}{\Psi}$ tem distribuição aproximadamente normal!
- Intervalo de $(1 \alpha)100\%$ de confiança para ln Ψ

$$\left\lceil \ln \hat{\psi} - z^* \sqrt{\operatorname{Var}[\ln \hat{\psi}]}; \ln \hat{\psi} + z^* \sqrt{\operatorname{Var}[\ln \hat{\psi}]} \right\rceil$$

 $\sqrt{z^*}=z_{\alpha/2}$: percentil superior de ordem 100($\alpha/2$)% da distribuição normal padrão

$$\Pr\{-z^* \le Z \le z^*\} = 1 - \alpha$$

- $\psi > 1$
 - √ Chance de ocorrência do evento é maior no grupo 1
 - √ Caracteriza um fator de risco
- $0 < \psi < 1$
 - √ Chance de ocorrência do evento é menor no grupo 1

Interpretação		
$\Psi = 1$	Não há associação entre o desfecho e o fator	
$\psi > 1$	Fator de risco	
$0 < \psi < 1$	Fator de proteção	

- Interpretação do IC:
 - √ Se este intervalo contém o zero (ψ=1) então a associação entre a doença e o fator de risco não é significativa
- Intervalo de confiança para ψ:
 - $\sqrt{\text{Exponencia-se}}$ os limites inferior (L_i) e superior (L_s) do intervalo para $\ln \psi$:

$$\left[\mathrm{e}^{L_{i}};\mathrm{e}^{L_{s}}\right]$$

Motivação para Uso de ψ

- Adoção da razão das chances como medida de associação entre fator de risco e doença:
 - √ Usualmente as doenças são raras
 - $\psi \approx \frac{P_1}{P_0} = RR$ • P_1 e P_0 pequenas, logo $Q_1 \approx Q_0 \approx 1$
 - A razão das chances é próxima do risco relativo, podendo ser interpretada da mesma maneira
 - $\sqrt{\psi}$ pode ser estimado com dados de qualquer tipo de estudo (Cornfield, 1956)
 - É possível estimar razão de chances em estudos pareados com resposta dicotômica (Fleiss, 1981)

Exemplo 7.6

- (Fraudenheim et al., 1994) Amamentação na infância e câncer de mama
 - √ Estudo caso-controle
 - √ Objetivo:
 - verificar se o fato de ter sido amamentada pela mãe é fator de proteção contra câncer de mama
 - √ Pacientes do grupo controle escolhidas na região (sem emparelhamento)

Doomoo	Fator de l	Total	
Doença	Presente	Ausente	- Total
Presente	pP_1	qP_{θ}	$pP_1 + qP_\theta$
Ausente	pQ_I	qP_{θ}	$pQ_1 + qQ_\theta$
Total	p	q	1

• Suponha a tabela proveniente de caso-controle

$$p_1 = \Pr(\text{exposição}|\text{caso}) = \frac{pP_1}{pP_1 + qP_0}$$
 $p_0 = \Pr(\text{exposição}|\text{controle}) = \frac{pQ_1}{pQ_1 + qQ_0}$

√ verifica-se que:

verifica-se que:
$$\psi_{\text{caso-controle}} \frac{\frac{p_1}{q_1}}{\frac{p_0}{q_0}} = \frac{p_1 q_0}{p_0 q_1} = \frac{P_1 Q_0}{P_0 Q_0} = \psi_{\text{coorte}}$$

- \sqrt{RR} aproximado por ψ , pode ser estimado diretamente de um estudo caso-controle
 - Ψ não fornece nenhuma informação sobre P₀ e P₁!

Dados obtidos no estudo:

Carra	Amamentação		T-4-1
Grupo	Sim	Não	Total
Casos	353	175	528
Controles	449	153	602
Total	802	328	

• Estimativa pontual de Ψ : $\hat{\psi} = \frac{(353)(153)}{(175)(449)} = 0,69$

√ Risco do grupo amamentado é aproximadamente 69% do risco do grupo não amamentado (Ψ aproxima o RR!)

•
$$\ln \hat{\Psi} = \ln(0.69) = -0.37$$

$$\operatorname{Var}[\ln \hat{\psi}] = \frac{1}{353} + \frac{1}{175} + \frac{1}{449} + \frac{1}{153} = 0.02$$

• Intervalo de 95% de confiança para ln Ψ

$$\begin{split} & \left[\ln \hat{\psi} - z^* \sqrt{\text{Var}[\ln \hat{\psi}]} \,; \ln \hat{\psi} + z^* \sqrt{\text{Var}[\ln \hat{\psi}]} \right] \\ & \left[\ln(0,69) - 1,96 \sqrt{0,02} \,; \ln(0,69) + 1,96 \sqrt{0,02} \right] \\ & \left[-0,64; -0,10 \right] \end{split}$$

• Intervalo de 95% de confiança para Ψ

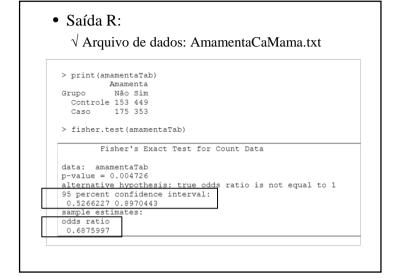
$$\left[e^{-0.64}; e^{-0.10}\right]$$
$$[0, 53; 0, 90]$$

• Conclusão:

√ Há indicação de uma associação significativa entre ter sido amamentada e câncer de mama

√ Resultado dever ser interpretado com cuidado

- Não foram considerados fatores importantes como: história familiar e idade na primeira gestação
- Modelo multivariado que incorporou essas variáveis mostrou que a associação não era significativa



Exemplo

- Hemorragia peri-intraventricular (HPIV)
 - √ Averiguação de alguns fatores de risco para HPIV
 - $\sqrt{\text{Número de diagnósticos de HPIV}}$, segundo faixa de peso

• Dados obtidos no estudo:

HDIV	Peso	T-4-1	
HPIV	< 1.500	1.500 - 2.000	Total
Presente	24	15	39
Ausente	32	49	81
Total	56	64	120

• Estimativa pontual de
$$\Psi$$
 : $\hat{\psi} = \frac{(24)(49)}{(15)(32)} = 2,45$

 $\sqrt{\rm A}$ chance de HPIV de recém-nascidos com menos de 1.500 g é de quase 2,5 vezes a chance dos que nascem com peso de 1.500 a 2.000 gramas

• Saída R – Teste exato de Fisher:

√ Arquivo de dados: HPIV.txt

```
> print(hpivTab)
Peso
HPIV >= 1.500 < 1.500
Ausente 49 32
Presente 15 24
>
fisher.test(hpivTab)

Fisher's Exact Test for Count Data
data: hpivTab
p-value = 0.03154
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.044638 5.814436
sample estimates:
odds ratio
2.431197
```

•
$$\ln \hat{\Psi} = \ln(2,45) = 0,896$$

 $\operatorname{Var}[\ln \hat{\psi}] = \frac{1}{24} + \frac{1}{15} + \frac{1}{32} + \frac{1}{49} = 0,160$

• Intervalo de 95% de confiança para ln Ψ

$$\begin{split} \left[\ln \hat{\psi} - z^* \sqrt{\text{Var}[\ln \hat{\psi}]} \,; \ln \hat{\psi} + z^* \sqrt{\text{Var}[\ln \hat{\psi}]} \right] \\ \left[\ln(2, 45) - 1,96 \sqrt{0,160} \,; \ln(2, 45) + 1,96 \sqrt{0,160} \right] \\ \left[0,112; 1,680\right] \end{split}$$

• Intervalo de 95% de confiança para Ψ

$$[e^{0,112}; e^{1,680}]$$

[1, 119; 5, 366]

√ A chance varia aproximadamente de 1 a 5

Exemplo 7.7

- Efeito preventivo da aspirina
 - √ Resultados de ensaio clínico
 - √ Estimativa de risco relativo e intervalo de confiança obtidos por outra metodologia
 - Considerado tempo de acompanhamento por indivíduo

√ Frequência e riscos relativos referentes a infarto do miocárdio (IM) e acidente vascular cerebral (AVC)

	Grupo		Risco relativo	IC para RR
	Aspirina	Placebo	ŔR	
IM				
Fatal	10	26	0,34	$0,\!15-0,\!75$
Não fatal	129	213	0,59	$0,\!47-0,\!74$
Total	139	239	0,56	$0,\!45-0,\!70$
AVC				
Fatal	9	6	1,51	$0,\!54-4,\!28$
Não fatal	110	92	1,20	$0,\!91-1,\!59$
Total	119	98	1,22	0,92 - 1,60

Medida do Efeito: Resposta Dicotômica – Amostras Pareadas

- Conclusões:
 - √ Quem tomou aspirina teve redução de 44% na chance de IM (fatal e não fatal)
 - Resultado é estatisticamente significativo (IC não contém o valor 1)
 - $\sqrt{\text{Quem tomou aspirina teve aumento de 22\% na}}$ chance de AVC
 - Resultado não é estatisticamente significativo (IC contém o valor 1)

Teste de McNemar

- Forma apropriada para comparação de proporções nos estudos em que os dados são coletados de forma pareada
 - √ Resultados de classificação de dados pareados

Gt1-	Trata	T-4-1	
Controle	Sucesso	Fracasso	Total
Sucesso	k	r	n_1
Fracasso	s	1	n_2
Total	M_1	m_2	N

 $\sqrt{\text{Estimativa para a razão de chances}}(\psi_{McN})$

$$\hat{\psi}_{McN} = \frac{r}{s}$$

• A variação de $\hat{\Psi}_{\text{McN}}$ é mais facilmente calculada na escala logarítmica

$$Var[\ln \hat{\psi}_{McN}] = \frac{1}{r} + \frac{1}{s}$$

- $\ln \mathring{\Psi}_{\text{McN}}$ é aproximadamente normal
- Intervalo de $(1-\alpha)100\%$ de confiança para ln Ψ_{McN}

$$\left[\ln\left(\frac{r}{s}\right) - z^*\sqrt{\frac{r+s}{rs}}; \ln\left(\frac{r}{s}\right) + z^*\sqrt{\frac{r+s}{rs}}\right]$$

 $\sqrt{z^*}=z_{\alpha/2}$: percentil superior de ordem 100($\alpha/2$)% da distribuição normal padrão

$$\Pr\{-z^* \le Z \le z^*\} = 1 - \alpha$$

Exemplo

• Estudo caso-controle pareado

√ Distribuição de pacientes em estudo caso-controle pareado (com e sem fator de exposição):

Casos com	Controle	Total	
fator	Presente Ausente		Total
Presente	15	20	35
Ausente	5	60	65
Total	20	80	100

 $\sqrt{\text{Estimativa pontual de }\Psi_{\text{McN}}}$:

$$\hat{\psi}_{McN} = \frac{r}{s} = \frac{20}{5} = 4,0$$

- Interpretação do IC:
 - $\sqrt{}$ Se este intervalo contém o zero (ψ_{MeN} =1) então a associação entre a doença e o fator de risco não é significativa
- Intervalo de confiança para ψ_{McN} :
 - $\sqrt{\text{Exponencia-se}}$ os limites inferior (L_i) e superior (L_s) do intervalo para ln ψ_{McN} :

$$\left[\mathrm{e}^{L_i};\mathrm{e}^{L_s}\right]$$

• Há formas alternativas para se calcular o IC para a razão de chances para os dados pareados

• Teste de McNemar:

√ Saída R:

> mcnemar.test(amostra.exemplo)

McNemar's Chi-squared test with continuity correction

data: amostra.exemplo
McNemar's chi-squared = 7.84, df = 1, p-value = 0.00511

- Conclusão:
 - √ Os casos e controles diferem na presença do fator de exposição
 - $\sqrt{\text{Presença do fator quadruplica a chance de doença.}}$

•
$$\ln \hat{\Psi}_{\text{McN}} = \ln(4,0) = 1,386$$

$$\operatorname{Var}[\ln \hat{\psi}_{McN}] = \frac{1}{20} + \frac{1}{5} = 0,25$$

• Intervalo de 95% de confiança para $\ln \Psi$

$$\left[\ln \hat{\psi}_{McN} - z^* \sqrt{\frac{1}{r} + \frac{1}{s}}; \ln \hat{\psi}_{McN} + z^* \sqrt{\frac{1}{r} + \frac{1}{s}}\right] \\ \left[\ln(4,0) - 1,96\sqrt{0,25}; \ln(4,0) + 1,96\sqrt{0,25}\right] \\ \left[0,406; 2,366\right]$$

• Intervalo de 95% de confiança para Ψ

$$\left[e^{0,406}; e^{2,366}\right]$$

 $\left[1,50; 10,66\right]$

 \sqrt{A} chance varia aproximadamente de 1,5 a 10,5

Exemplo de Aplicação

• Teste de McNemar:

 $\sqrt{\text{Saída R} - \text{Teste exato:}}$

```
> library(exact2x2)
> mcnemar.exact(amostra.exemplo, conf.level=.95)

Exact McNemar test (with central confidence intervals)
data: amostra.exemplo
b = 20, c = 5, p-value = 0.004077
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.456777 13.638831
sample estimates:
odds ratio
4
```

- Conclusão:
 - √ Os casos e controles diferem na presença do fator de exposição
 - √ Presença do fator quadruplica a chance de doença.

Desnutrição Hospitalar

- Desnutrição em pacientes internados:
 - √ Tem alta prevalência
 - √ Pacientes cirúrgicos desnutridos têm alta incidência de complicações e índices superiores de mortalidade
- Inquérito Brasileiro de Nutrição: estudo observacional de pacientes do SUS:
 - $\sqrt{\text{Idade superior a 18 anos}}$
 - √ Paciente de 25 hospitais da rede pública, conveniados, filantrópicos e universitários
 - √ Período: maio a novembro de 1996
 - $\sqrt{4.000 \text{ casos } (2.072 \text{ clínicos e } 1.928 \text{ cirúrgicos})}$

Desnutrição Hospitalar

- Abordagens para avaliação do estado nutricional:
 - √ Avaliação subjetiva global (história clínica completa)
 - √ Medidas de dados antropométricos (peso, altura, IMC, medidas de pregas cutâneas)
 - √ Análises bioquímicas (contagem linfócitos e albumina)
 - √ Resposta a testes de sensibilidade cutânea

pacientes submetidos a CAD + HPA

√ Distribuição para algumas características dos

	Pacientes		Razão de Chances	IC para ψ
	Desnutridos	Nutridos	ψ	
Idade				
> 60 anos	85 (64,4%)	47 (35,6%)	1,81	$1,\!14-2,\!87$
$\leq 60 \text{ anos}$	121 (50,0%)	121 (50,0%)		
Câncer				
Sim	116 (85,5%)	23 (16,6%)	8,13	4,70 - 14,4
Não	90 (38,3%)	145 (61,7%)		
Infecção				
Sim	92 (61,7%)	57 (31,1%)	1,57	$1,\!01-2,\!45$
Não	114 (50,7%)	111 (49,3%)		
Internação				
≥ 8 dias	114 (69,9%)	49 (30,1%)	3,01	1,91-4,75
< 8 dias	92 (43,6%)	119 (56,4%)		

- Distribuição do estado nutricional
 - $\sqrt{}$ Destaque para cirurgias do aparelho digestivo e hérnias da parede abdominal

• Conclusões:

- √ Pacientes com neoplasias malignas têm chance de desnutrição em torno de 8 vezes mais alta do que os demais
- √ Pacientes internados por período superior a 7 dias apresentam chance de desnutrição 2,73 vezes mais alta do que os internados há menos tempo

Considerações Finais

• Significância Estatística vs. Significância Clínica Diagrama Study A (p < 0.05): Statistically significant Clinically significant Statistically significant Study B (P < 0.05): Study C (p >= 0.05): Not statistically significant Study D (p < 0.05): Statistically significant Possible clinically significant Study E (p < 0.05): Not clinically significant Study F (p >= 0.05): Not statistically significant Not clinically significant Study G (p >= 0.05): Not statistically significant Possibly clinically significant Clinically important (W) are equivalent

Significância Estatística e Significância Clínica

- Resultado estatisticamente significante:
 - √ Valor-p é menor que um ponto de corte (geralmente 0,05)
 - √ IC não inclui o zero
 - √ Probabilidade do resultado não ocorrer por acaso
- Resultado clinicamente importante:
 - $\sqrt{\text{Quantidade considerada clinicamente importante}}$ ou grande (W)

Teste de Hipóteses e Intervalo de Confiança

- Testes de Hipóteses bilaterais e Intervalos de Confiança são equivalentes
- IC engloba os valores plausíveis do parâmetro de interesse para um determinado coeficiente de confiança
 - $\sqrt{\text{Se o IC cont}}$ ém o valor especificado em H_0 , essa hipótese não é rejeitada

Tempos de Seguimento Diferentes

- Estudo de coorte:
 - √ Assumimos que pacientes dos grupos exposto e não-exposto foram acompanhados durante o mesmo período de tempo
 - √ Descrição de Risco Relativo em estudos de coorte
 - Em geral, é usada a razão de taxas de incidência da doença

 $\frac{\text{quantidade de doentes}}{\text{tempo total de acompanhamento}}$

• Podem ser usados modelos estatísticos de tempos de sobrevivência (acompanhamento)

Referências

Odds-Ratio

- Não há consenso em sua tradução
- Há críticas ao nome "razão de chances"
 - $\sqrt{\text{Palavra}}$ chance está relacionada mais com probabilidade

Bibliografia

- Soares, F., Siqueira, A. (Coopmed) Introdução à Estatística Médica
- Siqueira, A. e Tibúrcio, J. D. (Coopmed) Estatística na Área da Saúde
- Riffenburgh, R. H. (Academic Press) Statistics in Medicine
- Coghlan, A. A Little Book of R For Biomedical Statistics (Notas de Aula)