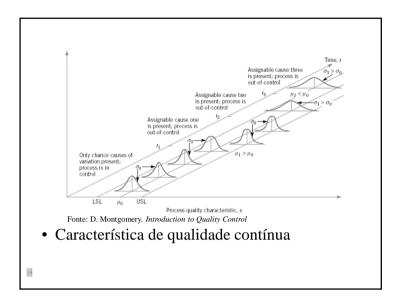
Ferramentas da Qualidade

Conceitos Básicos

Roteiro


- 1. Conceitos Básicos
- 2. Folha de Verificação
- 3. Gráfico de Pareto
- 4. Fluxograma
- 5. Diagrama de Causa-e-efeito
- 6. <u>Histograma</u>
- 7. <u>Diagrama de Dispersão</u>
- 8. Referências

Variabilidade dos Processos

- Causas Comuns ou Aleatórias:
 - √ Variabilidade inerente ao processo
 - Presente mesmo quando operando conforme padrão
 - $\sqrt{\text{Processo sob controle estatístico}}$
 - Comportamento estável/previsível
- Causas Especiais ou Atribuíveis:
 - $\sqrt{\text{Surgem em situações particulares}}$
 - √ Modificação no nível de qualidade do processo
 - √ Processo fora de controle estatístico

85

Controle Estatístico de Qualidade

Causa e Efeito

- Itens de controle: medição da qualidade do processo
 - $\sqrt{\text{Índices numéricos estabelecidos sobre os efeitos no processo para medir qualidade total}}$
 - $\sqrt{\text{Indicador de conformidade de característica de qualidade}}$
 - $\sqrt{\text{Ex.: Viagem JF} \text{SP: 5 horas}}$

• Redução da variabilidade do processo:

√ Coleta e análise de dados

√ Identificação das principais causas de variação

• Eliminação das causas especiais:

√ manutenção da estabilidade do processo (controle)

• Redução das causas comuns:

√ Melhoria do nível de qualidade do processo (capacidade)

Causa e Efeito

- Itens de verificação (avaliação):
 - $\sqrt{\text{Índices}}$ numéricos estabelecidos sobre as principais causas

√ Velocidade: 90 km/h

• Várias causas afetam efeito do processo. Poucas delas têm influência significativa

146

Problema

Resultado indesejável de um processo

 Item de controle com o qual não estamos satisfeitos

Exemplo

• Transformação de características da qualidade em itens de controle

Característica de qualidade	Item de controle	Fórmula
Alta Produção	Índice de produção	Qte. Semanal de RC's atendidas Qte. semanal de RC's recebidas
Custo operacional baixo	Custo operacional por RC atendida	Custo operacional mensal Qte. mensal de RC's atendidas
Estar satisfeito com o trabalho	Índice de faltas	Qte. mensal faltas não justificadas Qte. mensal de faltas por setor
Item comprado pelo menor preço	Índice de preço	Total mensal dos preços pagos Total mensal dos preços médios de mercado

Implantação Programas de Qualidade

- Perguntas Essenciais:
 - \sqrt{O} que precisa ser feito?
 - √ Como fazer?
- Deve-se sempre observar o método, assim como saber utilizar técnicas e ferramentas

Integração Ferramentas da Qualidade e PDCA

 As ferramentas da qualidade são utilizadas para coletar, processar e dispor as informações necessárias ao giro do PDCA para manter e melhorar resultados

Fonte: M.C.C. Werkema. Ferramentas Estatísticas para o Gerenciamento de Processos

Controle Estatístico de Processo

 Conjunto de ferramentas utilizadas para obter estabilidade e melhoria da capacidade dos processos, por meio da redução da variabilidade

Comentários

- "Nem todos os problemas podem ser resolvidos por essas ferramentas, mas pelo menos 95% podem ser, e qualquer trabalhador fabril pode utilizá-las efetivamente." (*Ishikawa*)
- Essas ferramentas deveriam ser ensinadas amplamente para toda a organização;
- O gráfico de controle é mais eficaz quando integrado em amplo programa de CEP.

Ferramentas do Controle da Qualidade

- Principais ferramentas de resolução de problemas de Controle Estatístico do Processo – CEP (Ishikawa):
 - 1. Histograma
 - 2. Folhas de verificação
 - 3. Diagrama de Pareto
 - 4. Diagrama de causa-e-efeito
 - 5. Fluxograma
 - 6. Diagrama de dispersão
 - 7. Gráfico de controle

Ferramentas da Qualidade

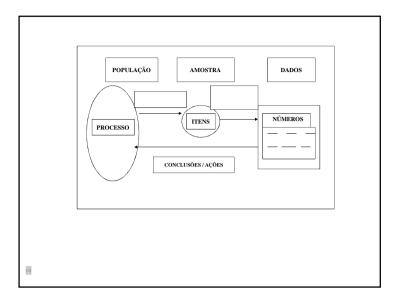
- Auxiliam nas etapas de:
 - √ Geração e organização de idéias;
 - √ Análise de dados;
 - √ Definição de estratégias e planos de ação;
 - √ Definição e priorização de ações
- Podem ser usados com:
 - √ Dados quantitativos;
 - $\sqrt{\text{Dados qualitativos}}$.

.

Cuidados

- Erro comum:
 - $\sqrt{\text{Procurar um problema que se ajuste à ferramenta.}}$
- Raciocínio correto:
 - $\sqrt{\text{Procurar}}$ as ferramentas que ajudam a resolver o problema.
- Importante:
 - √ Os dados precisam ser analisados para gerarem informações úteis e conseqüentemente ação (decisão)

Folha de Verificação


A Importância da Informação

- Existem casos em que:
 - √ A empresa não coleta dados;
 - √ A empresa coleta dados e não analisa;
 - √ A empresa coleta dados e analisa superficialmente ou de forma incorreta:
 - √ A empresa coleta, analisa e não atua;
 - \sqrt{A} empresa coleta, analisa e atua.

Coleta de Dados

- Primeira etapa para redução de variabilidade do processo
 - √ Representação da situação real do processo
- Objetivo: avaliar o processo
- Conceitos:
 - √ População: o processo
 - √ Amostra: itens retirados do processo que representem a população

600

- Sistema de Medição:
 - √ Os métodos de medição têm precisão adequada aos objetivos desejados?
 - √ Os instrumentos estão calibrados?
 - √As pessoas sabem ler os instrumentos com segurança?
 - √ Os instrumentos estão em local de fácil acesso às pessoas que farão a leitura e nas condições ambientais recomendadas pelo fabricante?

Obtenção de Dados Confiáveis

- Qual o objetivo da coleta de dados?
 - √ Coleta de dados sem objetivos definidos é inútil e onerosa
- Quais devem ser os dados coletados?
 - $\sqrt{\text{Focar dados importantes}}$
 - $\sqrt{\text{Tamanho amostral depende de:}}$
 - Objetivo da coleta
 - Características do processo (tipo de variável, variabilidade, etc.)
 - Precisão desejada da estimativa

- Registro dos dados
 - √ Foi elaborada folha de coleta de dados (lista de verificação)
 - simples?
 - de fácil preenchimento ?
 - com espaço para registrar todas as informações relevantes?
 - há histórico dos dados?
 - onde? Quando? Quem? Como? Registro de anomalias na coleta?

- Pessoal de campo:
 - $\sqrt{\text{sabem por que os dados estão sendo coletados?}}$
 - √ sabem preencher a folha de coleta sem qualquer dúvida?
- Supervisão é Importante!
 - √ Assegurar-se que não existem dúvidas quanto à coleta e registro dos dados
 - presença no local de coleta na fase inicial dos trabalhos

Usos

- Facilitar e organizar o processo de coleta e registro dos dados;
- Facilitar uso posterior dos dados;
- Dispor os dados de forma mais organizada;
- Verificar o tipo e a freqüência do defeito;
- Verificar a localização do defeito.

Folha de Verificação

- Planilha ou formulário para registro de dados;
 - $\sqrt{}$ Itens a serem verificados definidos previamente;
 - √ Coleta fácil e concisa de dados;
- Utilização de dados históricos ou correntes sobre operação do processo em investigação;
- É ponto de partida de todo procedimento de transformação de opinião em dados e fatos.

Vantagens

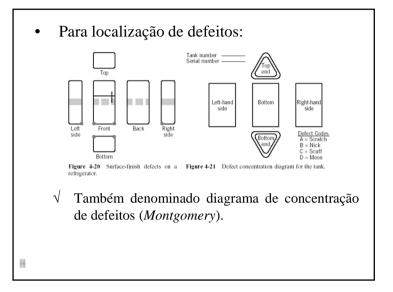
- Permite percepção rápida da realidade e imediata interpretação da situação;
- Auxilia na diminuição de erros e confusões;
- Resumo orientado no tempo é valioso na pesquisa de tendências ou padrões significativos.

Prof. Lupércio F. Bessegato - ICE/UFJF

7

- Importante:
 - √ Deve-se conhecer a estratificação dos dados antes da construção da Folha de Verificação;
 - $\sqrt{\text{Deve-se registrar sempre:}}$
 - Local da coleta;
 - Data da coleta:
 - Responsável pelo trabalho.
- Características:
 - √ Permite organização imediata dos dados, sem necessidade de rearranjo;
 - $\sqrt{\text{Otimiza posterior análise dos dados}}$.

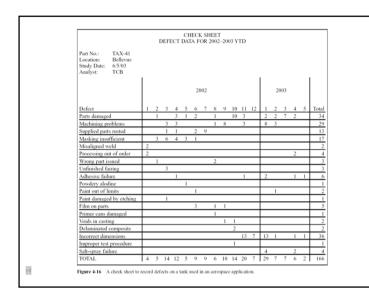
Tipos de Folha de Verificação (1)


- Para distribuição de frequência de um item de controle:
 - √ Estuda distribuição dos valores de um item de controle associado ao processo;
 - √ Permite classificação dos dados no instante de sua coleta

• Para classificação de defeito:

- √ Permite análise da freqüência de cada tipo de defeito;
- $\sqrt{\text{Possibilita estratificação dos dados}}$.

Componente: Conjunto ABC Processo de trabalho: montagem Quantidade produzida: 1.000 peças		Seção: Linha de montagem Data da produção: 30/03/05 Inspetor:			
Tipo de defeito	Tabulação	Frequ do item	Class	% individual	% acumulad
Alinhamento	///// ///// //	12	6°	06%	
Solda	///// ///// ///// ///// /	21	4°	10%	
Parafuso solto	///// ///// ///// ///// ///// ////	68	10	34%	
Junção	///// ///// /////	15	5°	07%	
Sujeira	///// ///// ///// ///// ///////////////	41	2°	20%	
Riscos	///// ///// ///// ///// /////	29	3°	14%	
Trinca	///// /////	10	7°	05%	
Rebarba	///// /	06	80	03%	
Bolha	/	01	90	01%	
totais		202		100%	


Controle Estatístico de Qualidade

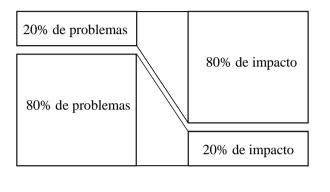
- √ Permite determinar se a localização fornece informação útil sobre causas potenciais de defeitos;
- √ Permite registro da localização física de nãoconformidades, defeitos, acidentes, etc.
- √ Possui geralmente um tipo de croqui ou vista ampliada, permitindo a marcação da localização do defeito;

Exemplo

- Folha de controle sobre defeitos relativos a tanques em indústria aeroespacial
 - √ Dados resumidos mensalmente
 - √ Identificação de tantos tipos de defeitos quanto possível
 - √ Objetivo:
 - investigar os tipos de defeitos
 - Resumo orientado no tempo
 - Pesquisar tendências ou padrões significativos

Planejamento

- Conscientização das pessoas envolvidas (*PORQUE*)
- Certificar-se que todos os fatores de estratificação de interesse tenham sido incluídos:
 - √ Máquinas,
 - √ Operadores
 - √ Turnos;
 - √ Matérias-primas;
 - √ Etc.
- Validar o formato e o planejamento (rodada de teste)


Planejamento

- Definir objetivo da coleta de dados;
- Determinar o tipo a ser usado;
- Incluir campos para registro de:
 - $\sqrt{\text{nomes dos departamentos envolvidos}}$;
 - $\sqrt{\text{pessoas responsáveis pelo preenchimento }(QUEM)}$
 - $\sqrt{\text{Origem dos dados (turno, data coleta, instrumento de medida, etc.}}$
- Instruções simplificadas para preenchimento

Gráfico de Pareto

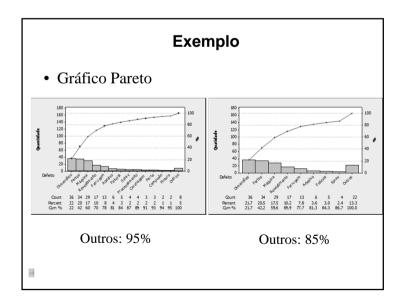
Princípio de Pareto

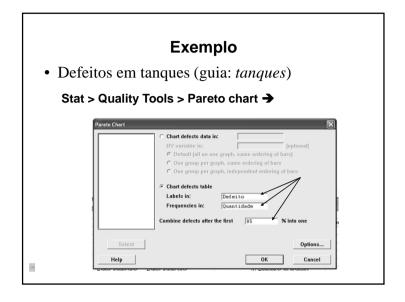
• Técnica que busca separar os problemas vitais (poucos) dos triviais (muitos)

Objetivo

- Identificar as causas dos "poucos problemas vitais";
 - √ Focar na solução dessas causas;
 - √ Eliminar uma parcela importante das perdas com um pequeno número de ações.

Problemas


- "Poucos e vitais":
 - √ Representam um **pequeno número de problemas** que, no entanto, resultam em **grandes perdas**.
- "Muitos e triviais":
 - √ São um **grande número de problemas** que resultam em **perdas pouco significativas**.


Diagrama de Pareto

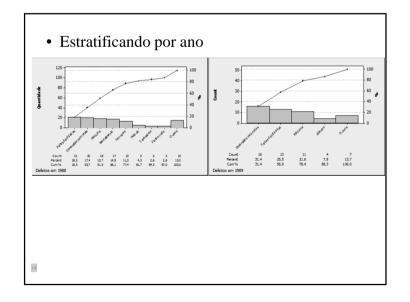

- Distribuição de frequências de dados organizados por categorias:
 - √ Marca-se a frequência total de ocorrência de cada defeito *vs.* o tipo de defeito
 - √ Uma escala para freqüência absoluta e outra para a freqüência relativa acumulada.

Diagrama de Pareto

- Identifica-se rapidamente os defeitos que ocorrem com maior freqüência
- Os defeitos mais freqüentes não são necessariamente os defeitos mais importantes.

Defeitos com Conseqüências Diversas

- Se há defeitos com consequências sérias, misturados com outros de menor importância, pode-se:
 - √ Usar ponderação para modificar as contagens de freqüências;
 - √ Acompanhar a análise do diagrama de Pareto de freqüência com uma gráfico de Pareto de custo ou de impacto

Ponderações

• Probabilidade de ser a principal causa do problema:

 $\sqrt{1,0}$: muito provável

√ 0,5: moderadamente provável

 $\sqrt{0,1}$: pouco provável

• Facilidade de atuação:

√ 1: difícil de atuar

√ 50: dificuldade de atuação moderada

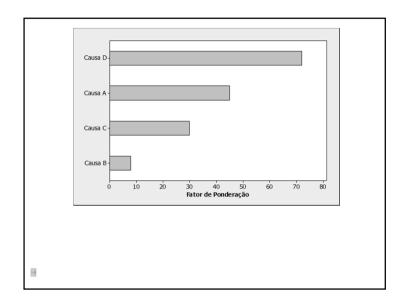

√ 100: fácil de atuar

Gráfico de Pareto Ponderado – Causas

- Quando o Pareto for para **causas**, pode-se ponderar pelas:
 - $\sqrt{\text{Probabilidade de ser a causa principal}};$
 - √ Facilidade de atuação
- Fator de ponderação=probabilidade x facilidade

Exemplo

Causa	Probabilidade	Facilidade Atuação	Fator de Ponderação
Causa A	0,90	50	45,0
Causa B	0,10	80	8,0
Causa C	0,30	100	30,0
Causa D	0,90	80	72,0

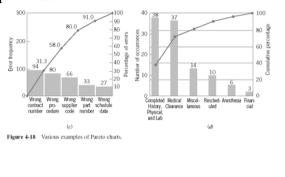
Outros Critérios

- Método REI
 - $\sqrt{\text{Resultado}}$
 - $\sqrt{\text{Exeq\"{u}ibilidade}}$
 - √ Investimento
- Método GUT
 - √ Gravidade
 - √ Urgência
 - √ Tendência

Gráfico de Pareto Ponderado – Defeitos

- Quando o Pareto for para **defeitos**, pode-se ponderar a freqüência dos defeitos pela:
 - √ Criticidade do defeito;
 - √ Custo do defeito.
- Fator ponderador=freqüência x criticidade x custo

• Método REI


Resultado (R)	Exeqüibilidade (E)	Investimento (1)	Prioridade (P)
Resultado que a alternativa proporciona:	Facilidade de implantação da alternativa:	Custo de implantação da alternativa:	
Elimina todas as dificuldades:	Fácil de ser implantada:	Baixo custo de implantação:	
Peso: 5	Peso: 5	Peso: 5	P=RxExI
Elimina parcialmente:	Dificuldade intermediária:	Custo intermediário:	
Peso: 3	Peso: 3	Peso: 3	
Elimina totalmente:	Difícil de ser implantada:	Alto custo de implantação:	
Peso: 1	Peso: 1	Peso: 1	

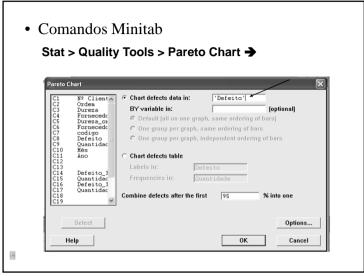
• Método GUT

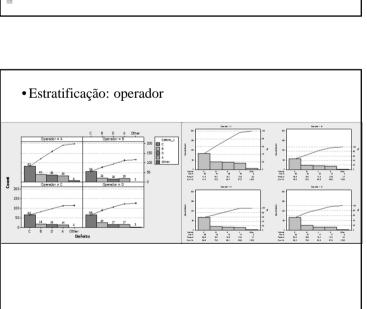
Gravidade (G)	Urgência (U)	Tendência (T)	Prioridade (P)
Prejuízo que a situação poderá causar:	Urgência na tomada de decisão:	Situação no caso de não ser efetuada nenhuma ação:	
Muito importante	Imediata	Situação deteriorará	
Peso: 5	Peso: 5	Peso: 5	$P = G \times U \times T$
Moderadamente importante	A médio prazo	Situação estável	
Peso: 3	Peso: 3	Peso: 3	
Pouco importante	Pode ser adiada	Situação melhorará	
Peso: 1	Peso: 1	Peso: 1	

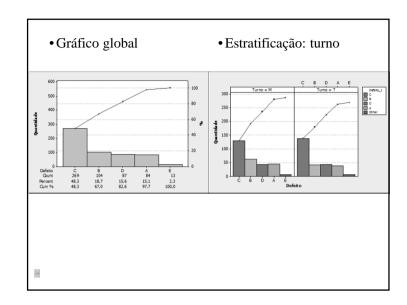
Aplicações Não-industriais

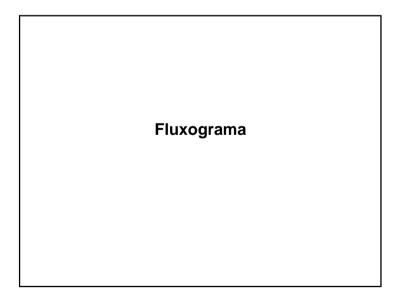
 Muito utilizado em métodos de melhoria de qualidade

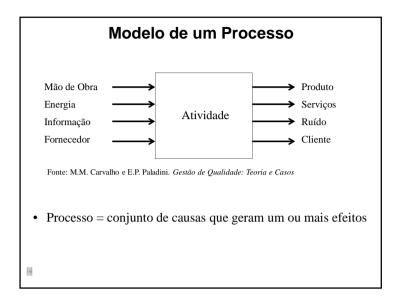
Comentários

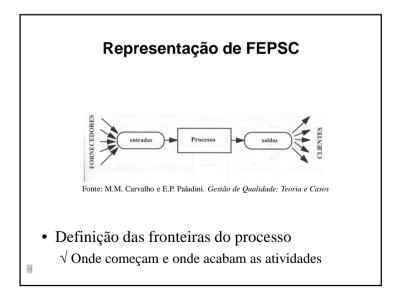

- Comparação dos gráficos de Pareto "antes" e "depois" permitem avaliar o impacto de mudanças efetuadas no processo.
- Nem sempre eventos mais freqüentes ou de maior custo são os mais importantes.
 - $\sqrt{\text{Ex. Um}}$ acidente fatal vs. 100 cortes nos dedos


Comentários


- Gráficos de Pareto sobre causas de problemas:
 - $\sqrt{\text{Se}}$ não aparecerem diferenças claras, reagrupar os dados
- Se a categoria "**outros**" apresentar freqüência elevada, significa que as categorias não foram adequadas;


Exercício


- Análise do processo de preenchimento de apólices de seguro:
 - √ 2 modelos diferentes de formulário
 - $\sqrt{4}$ operadores trabalharam no preenchimento
 - $\sqrt{5}$ tipos de problemas com os formulários
- Pede-se:
 - $\sqrt{\text{Identificar os problemas vitais e triviais}}$
 - √ Considerar estratificação na análise
- Banco de dados: seguro

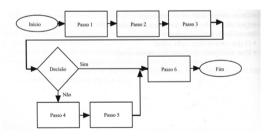


Mapeamento de Processos

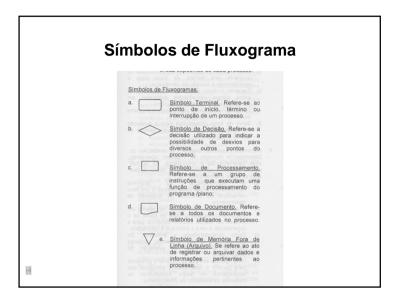
- Objetivo:
 - √ Conhecer com detalhe e profundidade todas as operações que ocorrem durante fabricação de produto
- Mapeamento:
 - √ Entender os conceitos do processo e sistema
 - √ Entender os elementos do FEPSC
 - Fornecedor, entrada, processo, saída, cliente)
 - √ Entender o que é valor para a empresa e o cliente
 - $\sqrt{\text{Saber identificar onde uma melhoria deve ter maior impacto}}$

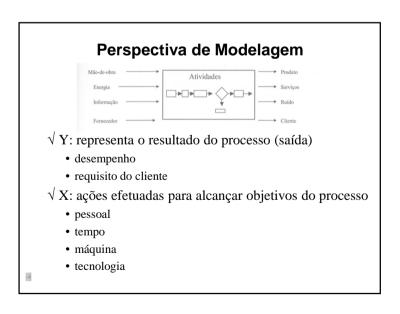
- O fluxograma possibilita:
 - $\sqrt{\text{Criar}}$ entendimento comum,
 - $\sqrt{\text{Tornar claro os passos em um processo}}$,
 - √ Identificar oportunidades de melhoria (complexidade, desperdício, atrasos, ineficiências e gargalos)
 - √ Revelar problemas no processo
 - $\sqrt{\text{Revelar operação do processo}}$

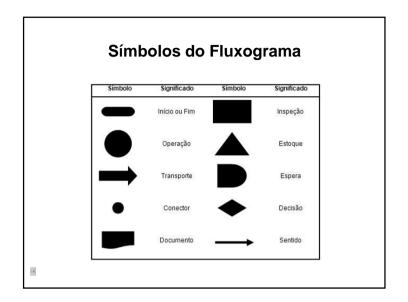
FEPSC - Sequência Lógica

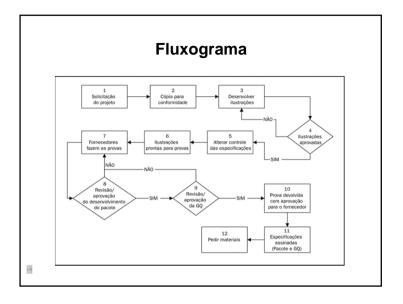

- Determinação do propósito:
 - $\sqrt{\text{Porque existe o processo?}}$
 - $\sqrt{\text{Qual \'e o prop\'osito deste processo?}}$
 - √ Qual é o resultado?
- Análise das saídas
 - $\sqrt{\text{Que produto faz este processo?}}$
 - √ Quais são as saídas deste processo?
 - $\sqrt{\text{Em que ponto termina este processo?}}$

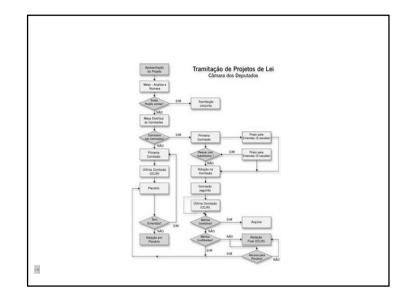
- Determinar os passos do processo:
 - \sqrt{O} que ocorre com cada *input*?
 - $\sqrt{\text{Que atividades de conversão acontecem?}}$


- Dados dos clientes:
 - $\sqrt{\text{Quem usa os produtos deste processo?}}$
 - √ Quem são os clientes deste processo?
- Análise das entradas e fornecedores
 - √ De onde vem a informação ou material com o qual você trabalha?
 - $\sqrt{\text{Onde afetam o fluxo do processo?}}$
 - $\sqrt{\text{Que efeito tem no processo e nos resultados?}}$

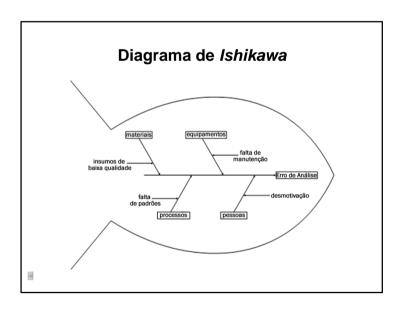

Fluxograma

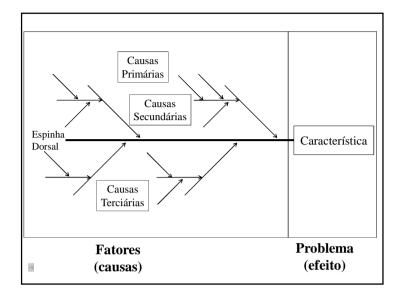

• Ferramentas que tornam um processo visível


Fonte: M.M. Carvalho e E.P. Paladini, Gestão de Qualidade: Teoria e Casos



- Melhoria da qualidade:
 - √ Atacar as causas que afetam o processo de modo a eliminá-las, melhorá-las e controlá-las


Diagrama de Causa-e-efeito

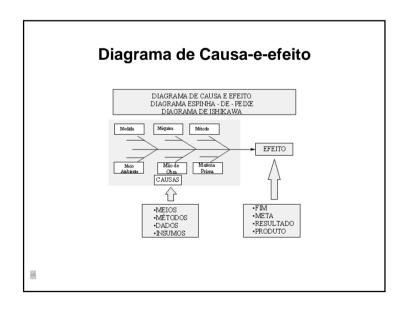

Diagrama de Causa-e-efeito

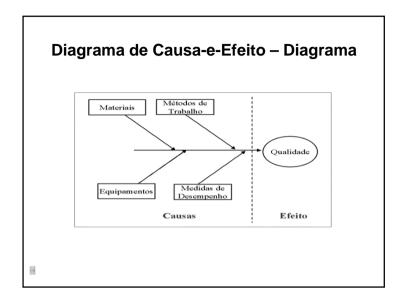
- Representa a relação entre o "efeito" e suas possíveis "causas";
- Utilizado para **identificar**, **explorar** e **ressaltar** as possíveis causas de um problema ou condição específica
- Ferramenta útil na eliminação de causas potenciais

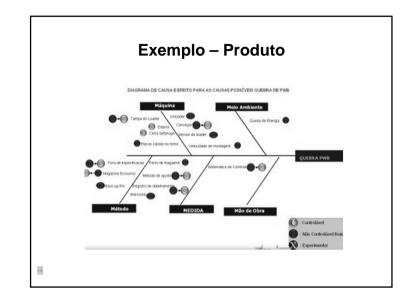
Outros Nomes

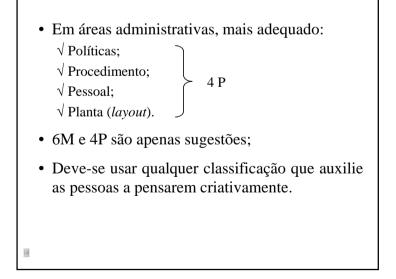
- Diagrama de espinha de peixe;
- Diagrama de Ishikawa;
- Diagrama 6M

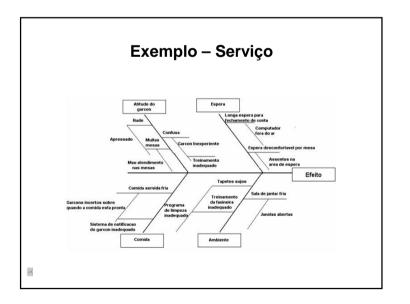
Construção do Diagrama

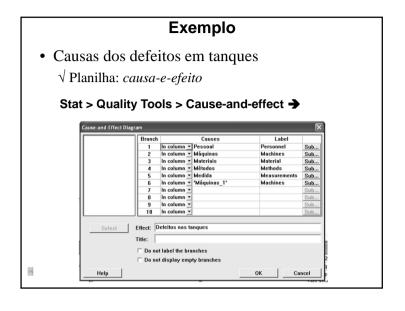

- Defina o problema a ser analisado;
- Forme equipe para a análise
 - √ Em geral, as causas potenciais são descobertas em *brainstorming*;
- Desenhe a caixa de efeito e a linha central;
- Especifique as principais categorias de causas potenciais e coloque-as em caixas ligadas à linha central;

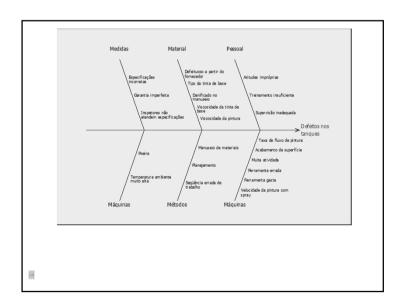

Construção do Diagrama

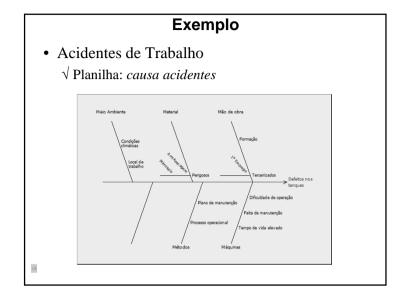

- Identifique as causas possíveis e classifique-as nas categorias do passo anterior. Crie novas categorias, se necessário
- Ordene as causas para identificar aquelas que parecem mais prováveis de causar impacto sobre o problema
- Adote ações corretivas

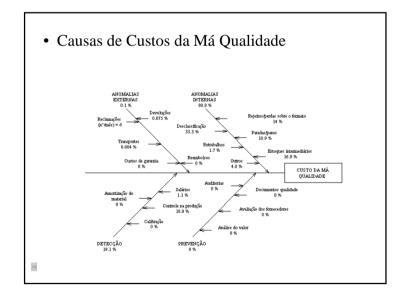

Detalhamento • Máquina: • Método: √ Deterioração √ Instrução √ Procedimento √ Manutenção • Meio Ambiente: • Mão-de-obra: √ Físico: √ Intempéries; √ Mental. √ Clima. • Material: • Medida: √ Fornecedor: √ Instrumento: √ Próprio. √ Inspeção.


Causas – 6M • As principais causas podem ser agrupadas em 6 categorias: √ Método; √ Mão–de–obra; √ Material; √ Máquina; √ Meio Ambiente; √ Medida.









Comentários

- O diagrama deve ser construído por pessoas realmente envolvidas no processo;
- A técnica de *brainstorming* auxilia o levantamento completo das possíveis causas;
- Deve-se expressar de forma mensurável os efeitos e as causas (sempre que possível);

Gráfico Seqüencial

Comentários

- Diagrama muito detalhado pode servir como um eficiente auxiliar para localizar e reparar defeitos
- A construção de um diagrama de causa-e-efeito como uma experiência de grupo tende a levar as pessoas envolvidas a atacar o problema e não a atribuir culpas

Gráfico Seqüencial

- Gráfico de dados ao longo do tempo;
 - √ Ferramenta de construção e atualização simples;
 - √ Pontos marcados em gráfico à medida de sua disponibilidade;

8

Construção de Gráfico Sequencial

- Obter dados quantitativos ordenados no tempo;
 - $\sqrt{\text{Escolher escala da unidade de tempo}}$;
 - $\sqrt{\text{Escolher escala para os dados quantitativos}}$;
 - √ Quantidade de erros, reclamações, quebras, etc.
- Marcar os pontos e ligá-los através de uma linha

- Observa-se o aspecto global do gráfico;
- Indicativo de processo fora de controle:
 - √ Algo diferente de uma nuvem de pontos distribuída ao acaso, em torno de um valor constante e com amplitude aproximadamente constantes;
- Em estado de controle estatístico:
 - $\sqrt{\text{Todas}}$ as causas especiais foram bloqueadas;
 - √ A variabilidade existente deve-se às causas comuns
 - Variação natural do processo

Uso

- Monitoramento da média esperada ao longo do tempo;
 - √ Pesquisar tendências, que poderiam indicar presença de causas especiais;
- Utilização comum em ocorrências de:
 - √ Paradas de máquinas;
 - √ Quantidades produzidas;
 - √ Quantidades de refugos
 - √ Outras variáveis no tempo

• Produção de dispositivos para medir radiação

√ Variável: Filter

√ 20 dispositivos, em grupos de 2

√ Planilha: radon

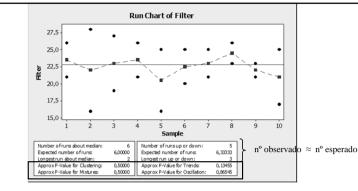
Stat > Quality Tools > Run Chart

Stat > Quality Tools > Run Chart

For data in subgroups across rows of:

For data in subgroup medians

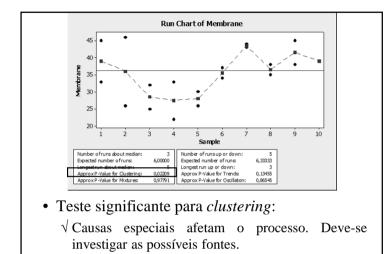
For data in subgroup medians


For data in subgroup medians

Interpretação Testes para Aleatoriedade

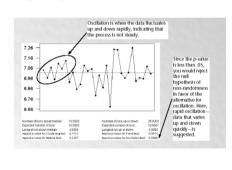
- Se há apenas causas comuns de variação (processo sob controle) os dados exibirão comportamento aleatório:
 - √ Número de rodadas (*runs*) observadas está próximo do número esperado de rodadas;
 - $\sqrt{\,{
 m Os}\,}$ testes para padrão aleatório são não significativos

Testes de Aleatoriedade

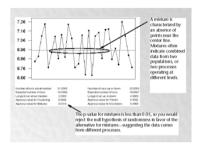

- Rodada (*run*):
 - $\sqrt{\text{Um ou mais pontos consecutivos do mesmo lado da }}$ mediana
- H₀: dados estão em sequência aleatória vs
- H₁: dados não estão em seqüência aleatória
 - $\sqrt{\text{Se n}^{\circ} \text{ observado}} > \text{n}^{\circ} \text{ esperado} \rightarrow \text{H}_{1}$: mistura
 - $\sqrt{\text{Se n}^{\circ} \text{ observado}}$ < $\sqrt{\text{n}^{\circ} \text{ esperado}}$ **→** H₁: cluster

- Todos os teste não significantes:
 - $\sqrt{\text{Apenas causas comuns atuam no processo.}}$

Cluster

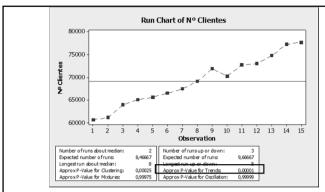

- Grupo de pontos em uma área do gráfico
 - $\sqrt{\text{Indica variação devido a causas especiais}}$
 - $\sqrt{\text{Sugerem problemas de medição ou de amostragem}}$

• Dados flutuando rapidamente para cima ou para baixo;


 $\sqrt{\text{Indica que o processo não está estável.}}$

Mistura

Ausência de pontos próximos à linha central
 √ Indica combinação de duas populações


 $\sqrt{\text{Processos operando em níveis diferentes}}$

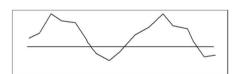
Tendência

- Pontos que movem-se para cima ou para baixo
 - √ Movimentos sustentados por fontes de variação sistemáticas:
 - √ Podem indicar que o processo está se tornando fora de controle
 - Máquina desajustando-se
 - Rotação periódica de operadores

Controle Estatístico de Qualidade

- Teste significante para tendência:
 - √ Podem alertar que o processo está se tornando fora de controle.


• Mudança brusca (salto) no nível médio da característica de qualidade:


- Possíveis causas especiais:

 - √ Uso de matéria-prima diferente

• Tendência ascendente ou descendente:

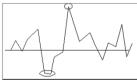
- Possíveis causas especiais:
 - √ Desgaste de ferramentas ou matrizes de uso contínuo;
 - √ Mudança gradual de condições ambientais:
 - Temperatura, umidade, etc.
 - √ Mudança gradual em parâmetros do processo;
 - √ Deterioração gradual de equipamentos

• Variações periódicas formando ciclos que se

- - √ Mudança nas condições operacionais do processo;
 - √ Utilização de métodos diferentes.

• Possíveis causas especiais:

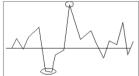
repetem:

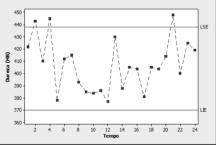

- √ Alteração sazonal na matéria-prima;
- √ Ocorrência de eventos periódicos:
 - Ambientais, físicos, químicos, etc.

• Alteração brusca na amplitude de variação:

- Possíveis causas especiais:
 - $\sqrt{\text{Aumento na amplitude:}}$
 - Operador inexperiente:
 - Matéria-prima com maior variação
 - √ Diminuição na amplitude:
 - Operador mais experiente;
 - Matéria-prima mais homogênea

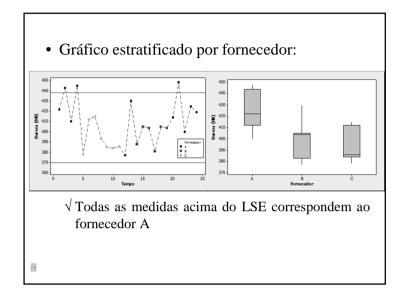
- Possíveis causas especiais:
 - √ Erros de cálculo, de medição, de transcrição de dados;
 - √ Instrumentos de medição descalibrados;
 - √ Descontrole temporário dos parâmetros do processo;
 - √ Defeito repentino nos equipamentos (correção imediata)
 - √ Amostras coletadas de processos diferentes (mistura de dados).

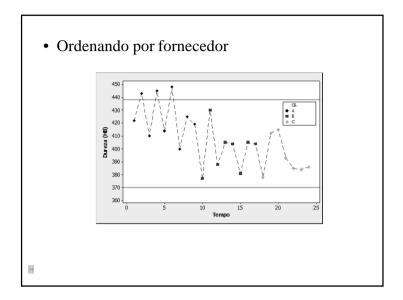

• Alteração gradual na amplitude de variação:



- Possíveis causas especiais:
 - $\sqrt{\text{Aumento na amplitude:}}$
 - Diminuição habilidade operador (fadiga, etc.)
 - Matéria-prima de pior qualidade
 - Ausência de método de manutenção de qualidade;
 - √ Diminuição na amplitude:
 - Situações opostas.

• Pontos outliers:


• Medidas de dureza de molas de aço:



Exemplo - Estratificação

• 3 medidas acima do LSE, indicativo de problema no processo de produção

Controle Estatístico de Qualidade

Referências

Bibliografia Recomendada

- Minitab Corp. (meio eletrônico) Meet Minitab para Windows – Versão 15.
- Montgomery, D. C. (LTC)
 Introdução ao Controle Estatístico da Qualidade
- Werkema, M. C. C. (QFCO)

 Ferramentas Estatísticas para o Gerenciamento de Processos