Avaliação de Sistemas de Medição	
Roteiro 1. <u>Características de um Sistema de Medição</u> 2. <u>Avaliação do Erro Sistemático</u> 3. <u>Repetitividade e Reprodutibilidade</u> 4. <u>Adequabilidade de Sistema de Medição</u> 5. <u>Aplicação</u>	
6. Referências	
Características de Sistema de Medição	

Medição

- O monitoramento de um processo dá-se através da medição de uma característica de qualidade;
- Medição produz resultados com erros ou com certo grau de incerteza;

Variabilidade

- Variabilidade total nos valores medidos de X:
 - √ Variabilidade real: inerente ao processo produtivo
 - Causas comuns e, ocasionalmente causas aleatórias;
 - √ Variabilidade inerente à medição.

$$\mathbf{s}_{total}^2 = \mathbf{s}_{processo}^2 + \mathbf{s}_{medição}^2$$

 Se o erro de medição for independente do verdadeiro valor da grandeza medida conseguese estimar diretamente s²_{tot.} e s²_{med.}

$$\mathbf{s}_{processo}^2 = \mathbf{s}_{total}^2 - \mathbf{s}_{medicão}^2$$

Características de um Sistema de Medição

- · Valor verdadeiro:
 - √ Resultado de uma medição perfeita
- Erro de medição:
 - √ Diferença entre o resultado de uma medição e o valor verdadeiro

e;		
com		
	•	
	1	
)		
do		
gue-		
	J	
	_	
ão		
alor		
	J	

Parcelas do Erro de Medição

- · Erro sistemático:
 - √ Diferença entre o valor médio de infinitas medições do mensurando (sob as mesmas condições) e seu valor verdadeiro;
- · Erro aleatório:
 - √ Diferença entre o resultado da medição e esse valor médio:
 - √ Tem média nula.
 - √Em geral, é bem representado por uma distribuição normal

- A magnitude do erro sistemático pode variar ao longo da escala do instrumento de medição;
- O erro sistemático pode ser conhecido e corrigido através de procedimento de calibração

Relacionamento entre os Erros

Erro aleatório pequeno

Erro aleatório grande

Com erro sistemático

Sem erro sistemático

- · Centro do alvo: valor verdadeiro da grandeza medida
- Instrumento "exato": Não possui erro sistemático;
- Instrumento "preciso": seu erro aleatório é pequeno

Diferenças entres Sistemas de Medição	
 Principais fatores que diferenciam os sistemas de medição: √ Detalhes construtivos e de projeto; √ Desgaste decorrente do uso; √ Modo de operação; √ Condições ambientais; √ Calibração. 	
Avaliação do Erro Sistemático	
Avaliação do Erro Sistemático	
 Comparação do resultados de medição obtido pelo instrumento com valor de referência obtido por padrão; Calibração: 	
√ Conjunto de operações que estabelece correspondência entre os valores entre os valores indicados pelo instrumento e os valores estabelecidos por padrão de referência	

Rastreabilidade

 Propriedade de um resultado de medição relacionar-se com referências estabelecidas;

Procedimento para Cálculo do Erro Sistemático

• <u>Diferença média</u> entre o valor de referência (x) e o valor medido (x_i) repetidas vezes pelo mesmo operador e em condições normais de operação

$$\overline{d} = \frac{\sum_{i=1}^{k} (x_i - x)}{k}$$

• Desvio-padrão amostral:

$$S_{d} = \sqrt{\frac{\sum_{i=1}^{k} (d_{i} - \overline{d})^{2}}{k - 1}}$$

Intervalo de Confiança

• Intervalo com (1 – a)100% de confiança:

$$\overline{d} - t_{\mathbf{a}/2,(k-1)} \frac{S_d}{\sqrt{k}} \leq erro \leq \overline{d} + t_{\mathbf{a}/2,(k-1)} \frac{S_d}{\sqrt{k}}$$

 Se o intervalo de confiança incluir o zero, não temos evidência amostral pra afirmar que o erro sistemático é diferente de zero, a um nível de significância a.

Erro Sistemático Relativo

• Porcentagem em relação à variabilidade total

% erro sistemático =
$$\frac{\left| \overrightarrow{d} \right|}{\mathcal{S}_{total}} \cdot 100$$

 Recomenda-se que esse percentual não deva exceder 10% para se considerar adequado o sistema de medição.

Repetitividade e Reprodutibilidade

Variabilidade na Medição

· Variância total:

$$\mathbf{s}_{total}^2 = \mathbf{s}_{processo}^2 + \mathbf{s}_{medic\tilde{a}o}^2$$

- Norma QS 9000 Quality Manuals
 (CHRYSLER, FORD, GENERAL MOTORS, 1994)
 - $\sqrt{process\ variation}$: variação total
 - √ part-to-part variation: variação do processo

Propriedades]
Repetitividade:	
√ Aptidão do instrumento em fornecer indicações muito próximas, me medições sucessivas de um mesmo mensurando, sob as mesmas condições;	
Reprodutibilidade:	
√ Grau de concordância entre resultados de medições de um mesmo mensurando efetuados sob condições variadas de medição	
• Podem ser expressas quantitativamente em	
função da dispersão dos resultados	
	1
Condições de Repetitividade	
-	
Mesmo procedimento de medição;	
Mesmo instrumento de medição, utilizado nas	
 Mesmo instrumento de medição, utilizado nas mesmas condições; 	
Mesmo local;	
• Repetição em curto espaço de tempo.	
	J
	_
Variabilidade da Medição	
Variabilidade inerente à medição:	
$\mathbf{S}_{med}^2 = \mathbf{S}_{repe}^2 + \mathbf{S}_{repro}^2$	
• \mathbf{s}^2_{repe} : variância dos resultados de medições	
sucessivas de um mesmo mensurando sob as mesmas condições;	
• \mathbf{s}^2_{repro} : variância dos resultados de um mesmo	
mensurando efetuadas sob condições variadas de	

medição

• Quanto menores \mathbf{s}^2_{repe} e \mathbf{s}^2_{repro} maiores, respectivamente, serão a repetitividade e a reprodutibilidade dos resultados das medições;	
• Usa-se quantificar a repetitividade de um instrumento pela largura da faixa que conterá 99,73% dos resultados sob condições de repetitividade (sob hipótese de normalidade): $\sqrt{6 s_{repe}}$	
• Analogamente, a reprodutibilidade pode ser quantificada por: $ \sqrt{ \mathbf{s}_{\textit{repro}} } $	
Procedimento de Estimação de s^2_{repe}	
 Medições sucessivas: √ da mesma grandeza; √ pelo mesmo operador; √ usando o mesmo procedimento de medição; 	
 √ usando o mesmo procedimento de medição; √ num mesmo local; √ sob as mesmas condições; √ em curto período de tempo. 	
 Seqüência de medições aleatorizada: √ Operador não sabe quando mede a mesma peça. 	
$\hat{m{s}}_{repe} = \frac{\overline{R}}{d_2}$	
d_2 $\sqrt{ m R}$: média das amplitudes de cada conjunto de	
medidas da mesma peça; √ Em geral, 2 medidas para a mesma peça.	
- · ·	
	I and the second

Procedimento de Estimação de S^2_{repro}

- Em geral considera-se a influência de diferentes operadores:
- $\hat{\boldsymbol{s}}_{repro}$: desvio-padrão de médias de vários operadores

$$\hat{\boldsymbol{S}}_{repro} = \sqrt{\left(\frac{\overline{R}_{\overline{x}}}{d_2}\right)^2 - \frac{\left(\hat{\boldsymbol{S}}_{repo}\right)^2}{n\,r}}, \ com \ \overline{R}_{\overline{x}} = \overline{\overline{x}}_{\max} - \overline{\overline{x}}_{\min}$$

- $\sqrt{\frac{z}{x_{max}}}$: máximo Valor dos resultados médios obtidos por diferentes operadores
- \sqrt{r} : número de vezes que cada item é medido por cada operador;
- \sqrt{n} : número de itens medido

$$\hat{\boldsymbol{S}}_{repro} = \sqrt{\left(\frac{\overline{R}_{\overline{x}}}{d_2}\right)^2 - \frac{\left(\hat{\boldsymbol{S}}_{repe}\right)^2}{n \, r}}, \ com \ \overline{R}_{\overline{x}} = \overline{\overline{x}}_{max} - \overline{\overline{x}}_{min}.$$
variância variância da média amostral total de cada operador

- Se há vários operadores, estima-se \mathbf{S}_{repro} por:

$$\hat{\mathbf{s}}_{repe} = \frac{\overline{\overline{R}}}{d_2}$$

• Estima-se que $\mathbf{S}^{2}_{repro} = 0$, se $\left(\frac{\overline{R}_{\overline{x}}}{d_{2}}\right)^{2} - \frac{\left(\hat{\mathbf{S}}_{repe}\right)^{2}}{nr} < 0$

Índice R & R

• Estimativa da capacidade do sistema de medição:

$$R \& R = 6 \hat{\mathbf{s}}_{med} = 6 \sqrt{\hat{\mathbf{s}}_{repe}^2 + \hat{\mathbf{s}}_{repro}^2}$$

• Índice R & R: índice de repetitividade e reprodutibilidade

-	

Exemplo - Micrômetro

- · Micrômetro com leitura milésima
 - $\sqrt{10}$ peças selecionadas aleatoriamente
 - √3 operadores medem duas vezes cada peça
 - √ Seqüência de medição é aleatorizada

	Opera	ador 1	Operador 2 Op			erador 3	
Peça Medida 1 Medida 2		Medida 1	Medida 2	Medida 1	Medida 2		
1	19,982	19,981	19,981	19,981	19,981	19,976	
2	19,994	19,993	20,001	19,997	19,996	19,996	
3	20,223	20,221	20,219	20,221	20,223	20,222	
4	20,226	20,226	20,222	20,226	20,223	20,224	
5	20,025	19,994	20,035	20,033	20,028	20,025	
6	20,234	20,233	20,234	20,234	20,233	20,227	
7	20,043	20,043	20,054	20,051	20,037	20,035	
8	20,050	20,049	20,052	20,051	20,032	20,032	
9	20,015	20,017	20,018	20,017	19,985	19,979	
10	19.980	19.980	19.980	19.980	19.994	19.980	

· Médias e amplitudes

	Opera	dor 1	Operador 2		Operador 3	
Peça	x	R	x	R	\overline{x}	R
1	19,982	0,001	19,981	0,000	19,979	0,005
2	19,994	0,001	19,999	0,004	19,996	0,000
3	20,222	0,002	20,220	0,002	20,223	0,001
4	20,226	0,000	20,224	0,004	20,224	0,001
5	20,010	0,031	20,034	0,002	20,027	0,003
6	20,234	0,001	20,234	0,000	20,230	0,006
7	20,043	0,000	20,053	0,003	20,036	0,002
8	20,050	0,001	20,052	0,001	20,032	0,000
9	20,016	0,002	20,018	0,001	19,982	0,006
10	19,980	0,000	19,980	0,000	19,987	0,014
Médias	20.07545	0.0039	20.07935	0.0017	20.07140	0.0038

• Cálculo repetitividade: d_2 para r = 2

$$\overline{\overline{R}} = \frac{0,0039 + 0,0017 + 0,0038}{3} = 0,00313$$
 $\hat{\mathbf{S}}_{repe} = \frac{0,00313}{1,128} = 0,00278$

• Cálculo reprodutibilidade: d_2 para o = 3

$$R_{\overline{X}} = 20,07935 - 20,0714 = 0,0079$$

$$\hat{\boldsymbol{s}}_{repro} = \sqrt{\left(\frac{0,0079}{1,693}\right)^2 - \frac{(0,00278)^2}{20}} = 0,0046$$

• Repetitividade e Reprodutibilidade do instrumento:

$$6\hat{\mathbf{s}}_{repe} = 0.0167 = 16.7 \text{ mm}$$

 $6\hat{\mathbf{s}}_{repro} = 0.0280 = 28 \text{ mm}$

Faixa que contém 99,73% dos resultados sob condições de repetitividade e reprodutibilidade

		_

Estimativa da capacidade do sistema de medição:	
$R \& R = 6\sqrt{(0,00278)^2 + (0,0046)^2} = 0,0325$	
• A largura da faixa que conterá 99,73% dos resultados é 32,5 mm	
√ se o erro de medição seguir distribuição normal	
Adequabilidade do Sistema de Medição	
Adequabilidade	
Adequação do sistema de medição: √ comparação de sua capacidade com as tolerâncias da	
característica de qualidade. • PT: percentagem de tolerância	
$PT = \frac{R \& R}{LSE - LIE} \cdot 100$	
. ==	

_				<u> </u>	
		a variabilidade total do conjunto de	9		
	dados:	$\% R \& R = \frac{R \& R}{6 \hat{s}_{total}} \cdot 100$			
	√ com:	$total = \sqrt{\frac{\sum_{i=1}^{o} \sum_{j=1}^{n} \sum_{k=1}^{r} \left(X_{ijk} - \overline{\overline{X}}^{2}\right)^{2}}{on r - 1}}$			
	$\sqrt[s]{o}$: número de	•			
	\sqrt{n} : número de	e itens medidos;			
	$\sqrt{\hat{\mathbf{s}}_{total}}$: desvio	medidas de cada item -padrão amostral de todas as medidas , tens, por todos os operadores.	,		
	$\sqrt{\frac{1}{x}}$: média ariti				
				_	
		ıção da Adequabilidade de istema de Medição			
		-			
	√ Critério pou	quanto à <i>razão PT</i> : aco rigoroso em caso de processos	s		
	altamente ca	pazes. quanto à <i>%R&R</i> :			
	• Classificação	quanto a 70K&K.			
	Classifi	cação quanto à % R & R			
	% R&R	Classificação			
	%R&R = 10	Adequado			

•	%R&R alto pode indicar que parte significativa da variação total
	provém do sistema de medição.

10 = % R & R = 30

R&R > 30

Pode ser adequado dependendo da importância da aplicação, do custo do instrumento, etc.

Inadequado. Sistema de medição necessita de melhorias

Comentários	
• s_{repe}^2 deve ser diminuído através da melhoria do	
processo de medição; √ instrumento mais sofisticado, treinamento operador, etc.	
• Se s_{repe}^2 é baixo com relação a s_{repro}^2 pode-se suspeitar de problemas com manutenção do instrumento,	
operadores, qualidade metrológica do instrumento, etc.	
• Se \mathbf{s}^2_{repro} é baixo com relação a \mathbf{s}^2_{repe} deve-se observar a necessidade de treinamento de operadores	
	1
Norma QS9000	
Recomendações:	
$\sqrt{\text{amostra de tamanho } n=10}$, $\sqrt{\text{cada operador medindo 2 vezes a mesma peça;}}$	
√3 operadores medindo as mesmas peças	
Caso possível aumentar o número de medidas por operador:	
√ Obtém-se melhores resultados medindo mais peças, do que aumentar a quantidade de medidas na mesma	
peça por operador.	
Aplicação	

Γ

Gage R&R Study

- Gage R&R Study (Crossed):
 - $\sqrt{\text{Cada}}$ peça é medida múltiplas vezes por cada operador.
- Gage R&R Study (Nested):
 - √ Cada peça é medida por apenas 1 operador
 - Ex.: Ensaio destrutivo

Gage R&R Study (Crossed)

- Método X e R:
 - √ Divide a variação total em 3 categorias: processo (part-to-part), repetitividade e reprodutibilidade.
- Método Anova:
 - √ Dá um passo a mais e divide a reprodutibilidade nos componentes: operador e na interação operador-peça

Variabilidade – Hierarquia Global Processo Medida Repetitividade Reprodutibilidade Operador Operador por peça

	_
_	_
	 _
	_
	_
	_
	_
	 _
	_
_	
7	
	_
	_
	_

Método ANOVA

- Tabela Anova de desenho fatorial balanceado 2fatores;
- · Efeito Operadores:
 - √ Variação entre diferentes operadores medindo a mesma peça;
- Efeito Peça por Operador:
 - $\sqrt{\text{Variação}}$ entre a média das peças medidas pro cada operador
 - Considera casos em que um operador apresenta maior variação quando mede peças menores, enquanto outro apresenta maior variação quando mede peças maiores

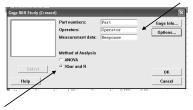
Quantidade de Categorias

- Quantidade de categorias dos dados que o sistema consegue perceber:
 - √ Deseja-se que o sistema de medição distinga uma alta quantidade de categorias (instrumento mais preciso)

categorias =
$$\frac{\hat{\mathbf{S}}_{processo}}{R & R} \times 1,41$$

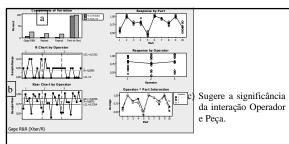
Quantidade de Categorias

- AIAG (Automobile Industry Action Group):
 - √# categorias < 2: sistema de medição inadequado para controlar o processo
 - Não se pode distinguir uma peça da outra
 - $\sqrt{\#}$ categorias = 2 : os dados podem ser distinguidos em dois grupos (Alto e Baixo);
 - √# categorias = 3 : os dados podem ser divididos em três grupos (Alto, Médio e Baixo)
 - $\sqrt{\text{# categorias}} = 4$: sistema de medição aceitável


	1	_
	١.	
	١.	
_	ı	
	l .	
	Ι.	
_	1	
	'	
	'	
_		

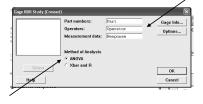
Sistema de Medição 1 - GAGEAIAG

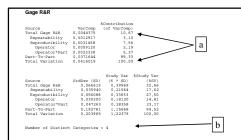
- · Situação:
 - √ A variação do sistema de medição **contribui pouco** na variação total;
- · Banco de dados:
 - √10 peças selecionadas, representando a amplitude esperada da variação do processo;
 - √3 operadores mediram as 10 peças, 2 vezes cada uma;
 - √ Aleatorização na seqüência das medidas
- · Planilha: gageaiag


- Estudo do Sistema de Medição do Banco GAGEAIAG:
 - $\sqrt{\text{Sistema de medição contribui pouco com a variação total;}}$
 - √ Análise com o método *Xbar* e *R*

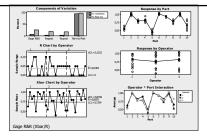
Stat > Qualitity Tools > Gage Study > Gage R&R Study(Crossed)

Gage R&R Study - XBar/R Method Source Total Gage R&R 0,0020830 Reproducibility 0,0039211 2,82 Part. To-Part 0,0389211 93.67 Total Gage R&R 0,0020830 Source Stude (80 0,003921) 100.00 Source (80 0,003921) 100.00 Source (80 0,03921) 100.00 Source (


- a) Colaboração do sistema de medição na variabilidade total;
- O critério da quantidade de categorias indica que o sistema de medição é adequado.

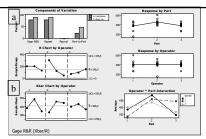


- a) Percentual baixo de variação devido ao sistema de medição;
- Maioria dos pontos fora dos limites de controle quando a variação é devido principalmente à diferença entre as partes (processo)


- Estudo do Sistema de Medição do Banco GAGEAIAG:
 - $\sqrt{\text{Sistema de medição contribui pouco com a variação total;}}$
 - √ Análise com o método *Anova*

Stat > Qualitity Tools > Gage Study > Gage R&R Study(Crossed)

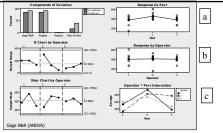
- a) Colaboração do sistema de medição na variabilidade total maior que aquela calculado anteriormente;
- O critério da quantidade de categorias indica que o sistema de medição é adequado.


- Percentual baixo de variação devido ao sistema de medição;
 - √ Maior que a calculado pelo método anterior

Sistema de Medição 2 - GAGE2

- Situação:
 - √ A variação do sistema de medição **contribui muito** na variação total;
- Banco de dados:
 - $\sqrt{3}$ peças selecionadas, representando a amplitude esperada da variação do processo;
 - √3 operadores mediram as 3 peças, 3 vezes cada uma;
 - $\sqrt{\mbox{Aleatorização}}$ na seqüência das medidas
- Planilha: gage2
 - $\sqrt{\text{Análise com o método } Xbar \text{ e } R.}$

- a) Porcentagem grande de variabilidade dos dados devese ao sistema de medição;
- b) Sistema de medição é pobre.
 - $\sqrt{}$ Não consegue distinguir diferenças entre as peças.



- a) Alta percentagem de variação devido ao sistema de medição, principalmente repetitividade;
- Maioria dos pontos dentro dos limites de controle quando a variação observada é devido principalmente ao sistema de medição.

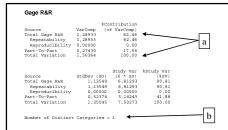
- Estudo do Sistema de Medição do Banco GAGE2:
 - $\sqrt{\text{Sistema de medição contribui pouco com a variação total;}}$
 - √ Análise com o método *Anova*

	80	ontribution		
Source	VarComp (of VarComp)	_	
Total Gage R&R	7304.67	84.36	•	
Repeatability	7304.67	84.36	_	<u> </u>
Reproducibility	0.00	0.00		a
Operator	0,00	0,00	_	
Part-To-Part	1354,50	15,64		
Total Variation	8659,17	100,00	•	
		Study Var	%Study Var	
Source	StdDev (SD)		(%SV)	
Total Gage R&R	85,4673		91,85	
Repeatability	85,4673		91,85	
Reproducibility	0,0000		0,00	
Operator	0,0000		0,00	
Part-To-Part	36,8036		39,55	
Total Variation	93,0547	558,328	100,00	

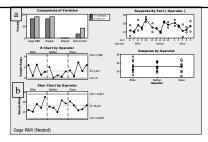
- a) Colaboração do sistema de medição na variabilidade total maior que aquela calculado anteriormente;
- O critério da quantidade de categorias indica que o sistema de medição é pobre.

- a) Pouca diferença entre as peças;
- b) Não há diferença entre os operadores;
- c) Diferenças insignificantes entre as combinações operador/peça
 - √ Visualização do p-valor da interação

Sistema de Medição 3 - GAGENEST


- Situação:
 - √30 medições;
 - $\sqrt{3}$ operadores mediram as 5 diferentes peças, 2 vezes cada uma;
 - √ Dois operadores não mediram a mesma peça
- · Planilha: gagenest

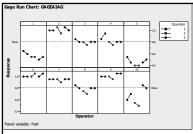
 Estudo do Sistema de Medição do Banco GAGENEST:


Stat > Qualitity Tools > Gage Study > Gage R&R Study(Nested)

		•
:S		
	1	
		•
S		
О		
		,
		•
	I	 ,

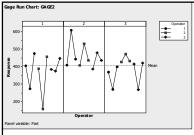
- A maior parte da variação é devida ao sistema de medição;
- O critério da quantidade de categorias indica que o sistema de medição é pobre..

- a) A maior parte da variação é devida ao sistema de medição;
- Maioria dos pontos dentro dos limites de controle quando a variação observada é devido principalmente ao sistema de medição.


Gage Run Chart

- Todas as observações por operador e por peça;
- Linha horizontal:
 - √ Valor-alvo ou calculado a partir dos dados.
- Um processo estável apresenta uma nuvem horizontal de pontos;
- Efeito de operador ou de peça produziriam algum tipo de padrão no gráfico

- Pode-se comparar variação:
 - √ Entre medidas por cada operador;
 - √ Diferenças em medidas entre operadores.
- Pode-se verificar relação das medidas com a linha de referência.


Stat > Qualitity Tools > Gage Run Chart

Planilha: gageaiag

- Maioria das observações deve-se a diferenças entre as pecas;
- 2^as medidas do operador 2 é consistentemente menor que a 1^a (7 em 10)
- Medidas do operador 2 são consistentemente menores que as medidas do operador 1 (8 em 10)

Planilha: gage2

· Fator dominante é a repetitividade;

- √ Grandes diferenças em medições quando o mesmo operador mede a mesma peça;
- Oscilações sugerem que os operadores estão "ajustando" como eles medem entre as medições.

Estudo de Linearidade e Vício

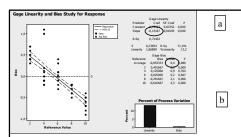
- Linearidade: Precisão das medições na faixa esperada de valores:
 - √ "Meu instrumento tem a mesma precisão para todos os tamanhos sendo medidos?"
- Vício: Diferença entre as medidas médias observadas e uma referência ou valor padrão:
 - √ "Qual a precisão de meu instrumento quando comparado com um padrão?"

Exemplo

- 5 peças selecionadas para representar a faixa esperada das medidas;
- Determinado o valor padrão de cada peça;
- Único operador mede aleatoriamente 12 vezes cada peça
- Estudo $Gage\ R\&R$ indicou variação do processo igual a 14,1941

Medidas de Linearidade e Vício

- · Linearidade:
 - $\sqrt{\text{Regress\~ao}}$ linear dos desvios médios para as medidas padrão
 - $\sqrt{\text{Linearidade}} = \text{inclinação } x \, \mathbf{s}_{processo}$
 - √% em relação à variabilidade do processo = inclinação x 100
 - √ Quanto mais próxima de 0 for a inclinação, melhor a linearidade do instrumento.


-	

· Vício:

- $\sqrt{\mbox{M\'e}\mbox{dia}}$ dos desvios de todas as peças com relação a suas medidas padrão
- $\sqrt{\mbox{\%}}$ de vício em relação à variação do processo = desvio médio / $\mathbf{s}_{processo}$.

Stat > Qualitity Tools > Gage Linearity and Bias Study

- a) Variação devido a linearidade é 13% da variação global do processo;
- b) Variação devido à precisão é menor que 1% da variação global do processo

Referências	
Bibliografia Recomendada	
 Bibliografia Recomendada Costa, A. F. B., Epprecht, E. K., Carpinetti, L. C. R. (Atlas) Controle Estatístico de Qualidade 	