Análise Bidimensional	
Roteiro 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Referências	
Coeficiente de Correlação	

Objetivos

Análise de duas variáveis quantitativas:

- traçar diagramas de dispersão, para avaliar possíveis relações entre as duas variáveis;
- calcular o coeficiente de correlação entre as duas variáveis;
- obter uma reta que se ajuste aos dados segundo o critério de mínimos quadrados.

Exemplo 1 - Diagramas de Dispersão e Correlação

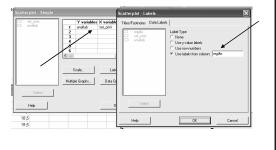
- Dados de algumas regiões metropolitanas:
 - ✓Porcentagem da população economicamente ativa empregada no setor primário
 - ✓Índice de analfabetismo

Planilha: analfabetismo

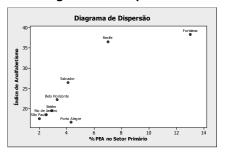
Fonte: Indicadores Sociais para Áreas Urbanas,

IBGE – 1977 (Bussab)

Região	Setor Primário	Indice
Regiao	Setor i illiano	Analfabetismo
São Paulo	2,0	17,5
Rio de Janeiro	2,5	18,5
Belém	2,9	19,5
Belo Horizonte	3,3	22,2
Salvador	4,1	26,5
Porto Alegre	4,3	16,6
Recife	7,0	36,6
Fortaleza	13,0	38,4


Fonte: Indicadores Sociais para Áreas Urbanas - IBGE - 1977.

,	
,	
,	
,	


Problema

- Existe alguma relação entre a porcentagem da população economicamente ativa no setor primário e o índice de analfabetismo?
- Em caso afirmativo, como quantificá-la?

Obter o diagrama de dispersão dos dados:
 Graph > Scatter Plot > Simple

Diagrama de Dispersão

Há dependência linear entre as variáveis?

-	

Coeficiente de Correlação

$$r = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{S_{XY}}{\sqrt{S_{XX} S_{YY}}}$$

• Cálculo do Coeficiente de Correlação ✓Em Session, Editor > Enable Commands.

MTB > Correlation 'set_prim' 'analfab'

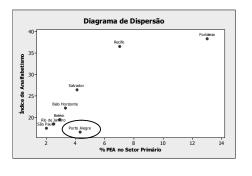
Correlations: set_prim; analfab

Pearson correlation of set_prim and analfab = 0,867 P-Value = 0,005

Ou através de:

Stat > Basic Statistics > Correlation

Correlação


• Há alguma região com comportamento diferente

das demais?

 Em caso afirmativo, retire-a da base de dados e recalcule a correlação.

dados

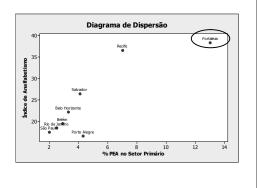
Porto Alegre

 Correlação sem dados da região metropolitana de Porto Alegre (linha 6 da base de dados).

MTB > correlation 'set_prim' 'analfab';
SUBC> exclude;
SUBC> rows 6.

Correlations: set_prim; analfab

Excluding specified rows: 6 1 rows excluded


Pearson correlation of set_prim and analfab = 0,908 P-Value = 0,005

Porcentagem de Variação

$$100 \times \left| \frac{r_{(i)} - r}{r} \right|$$

- r: correlação calculada com todas as observações
- r(i):correlação calculada sem a i-ésima observação.

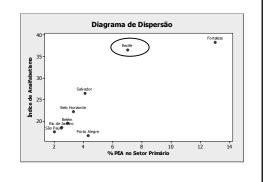
$$100 \times \left| \frac{0.908 - 0.867}{0.867} \right| = 4.7\%$$

Fortaleza

• Correlação sem dados da região metropolitana de Fortaleza

(linha 8 da base de dados).

MTB > correlation 'set_prim' 'analfab';
SUBC> exclude;
SUBC> rows 8.


Correlations: set_prim; analfab

Excluding specified rows: 8 1 rows excluded

Pearson correlation of set_prim and analfab = 0,858 P-Value = 0,013

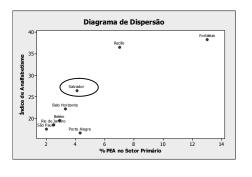
porcentagem de variação em relação à correlação inicial:

$$100 \times \left| \frac{0.858 - 0.867}{0.867} \right| = 1.0\%$$

Recife

· Correlação sem dados da região metropolitana de Recife

(linha 7 da base de dados).


MTB > correlation 'set_prim' 'analfab'; SUBC> exclude; SUBC> rows 7. Correlations: set_prim; analfab

Excluding specified rows: 7 1 rows excluded

Pearson correlation of set_prim and analfab = 0,916 P-Value = 0,004

porcentagem de variação em relação à correlação inicial:

$$100 \times \left| \frac{0.916 - 0.867}{0.867} \right| = 5.7\%$$

Salvador

• Correlação sem dados da região metropolitana de Salvador

(linha 5 da base de dados).

MTB > correlation 'set_prim' 'analfab'; SUBC> exclude; SUBC> rows 5.

Correlations: set_prim; analfab

Excluding specified rows: 5 1 rows excluded

Pearson correlation of set_prim and analfab = 0,882 P-Value = 0,009

porcentagem de variação em relação à correlação inicial:

$$100 \times \left| \frac{0,882 - 0,867}{0,867} \right| = 1,7\%$$

Resumo

Região Retirada	Variação (%)
Porto Alegre	4,8
Fortaleza	1,0
Salvador	1,7
Recife	5,7

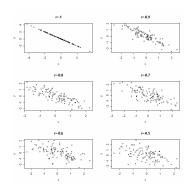
Comentários (1)

- As regiões metropolitanas mais influentes no valor da correlação são Porto Alegre e Recife.
- Porto Alegre tem um comportamento diferente, pois sua taxa de analfabetismo é pequena comparada à sua PEA em relação às demais regiões.

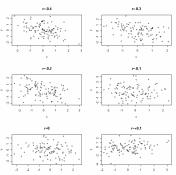
Comentários (2)

- Recife tem uma taxa de analfabetismo alta comparada sua PEA com as demais regiões.
- Apesar de ser um ponto afastado dos demais, Fortaleza mantém o padrão da maioria das regiões.

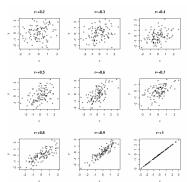
-	
-	
-	


Propriedades de r

- Mede a intensidade de relacionamento linear
- r é adimensional e -1 = r = 1
- A conversão da escala de qualquer das variáveis não altera o valor de *r*.
- O valor de *r* não é afetado pela escolha de x ou y.

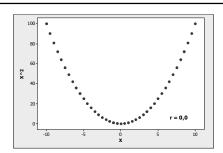

Propriedades de r

- O valor de *r* não é alterado com a permutação de valores de x e y.
- Uma correlação baseada em médias de muitos elementos, em geral, é mais alta do que a correlação entre as mesmas variáveis baseada em dados para os elementos


Diagramas de Dispersão (1)

Diagramas de Dispersão (3)

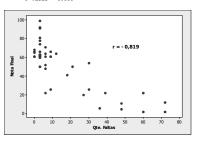
Exemplo 2 - Relação Determinística


- Calcular o coeficiente de correlação entre Y e X, para $Y = X^2$, para -10 = x = 10
- Construção da coluna *X*:

Calc > Make Patterned Data > Simple Set of Numbers→

First value: -10 Last value: 10 In steps of: 0,5

- Construção da coluna *Y*:
 - $\sqrt{\text{Em Session, Editor}} > \text{Enable Commands.}$ Let 'X^2' = X**2
- Diagrama de dispersão entre X^2 e Y
 - $\sqrt{\text{Em Session, Editor}} > \text{Enable Commands.}$ Plot 'X' * 'X^2'
- Coeficiente de correlação entre *X*^2 e *X*


Existe uma relação de dependência $\underbrace{N\tilde{A}O$ -LINEAR}_{\text{entre as variáveis.}}

Exemplo 3 - Desempenho Acadêmico

- - ✓Total de faltas
- Calcular a correlação entre elas Planilha: *prob1*

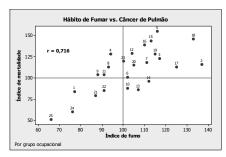
Correlations: Final; Faltas

Pearson correlation of Final and Faltas = -0.819 P-Value = 0.000

Correlação: Cuidados na interpretação

 Uma correlação amostral entre duas variáveis próxima de 1 ou -1 pode só indicar que as variáveis crescem no mesmo sentido (ou em sentidos contrários), e não que, aumentos sucessivos em uma, acarretarão aumentos sucessivos (ou diminuições sucessivas) na outra.

Exemplo 4 - Hábito de Fumar


- Dados sobre hábito de fumar entre homens e mortalidade por câncer de pulmão, na Inglaterra:
 - ✓Dados distribuídos em 25 tipos de ocupação;
 - ✓ Variáveis:
 - Grupo: grupo de ocupação
 - Ifumo: índice de fumo
 - Imorte: índice de mortalidade

Planilha: fumo

Fonte: The Data and Story Library http://lib.stat.cmu.edu/DASL/

Exemplo 4 – Hábito de Fumar • <u>ifumo</u>: razão do número médio diário de cigarros fumados sobre a média global de cigarros. ✓Base: 100 ✓ifumo = 100: número médio de cigarros por dia para o grupo é igual ao número médio global de cigarros fumados por dia ✓ifumo > 100: grupo fuma mais que o global ✓ifumo < 100: grupo fuma menos que o global Exemplo 4 – Hábito de Fumar • imorte: razão da taxa de mortes sobre a taxa global de mortes (por câncer de pulmão). ✓Base: 100 √imorte = 100: número médio de mortes por câncer de pulmão para o grupo é igual ao número médio global de mortes por câncer de pulmão ✓imorte > 100: grupo com incidência de mortes por câncer de pulmão maior que o geral ✓imorte < 100: grupo com incidência de mortes por câncer de pulmão menor que o geral Fumo vs Câncer • Construa o diagrama de dispersão e calcule a correlação; • Analise os dados e avalie se há relação entre os índices.

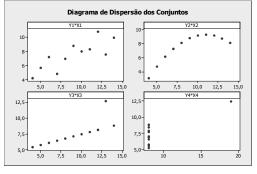
• Diagrama de dispersão entre fumo e mortalidade ✓Em Session, Editor > Enable Commands. Plot 'imorte' * 'ifumo' • Correlação entre fumo e mortalidade MTB > Correlation imorte ifumo Correlations: imorte; ifumo Pearson correlation of imorte and ifumo = 0,716 P-Value = 0,000 $\,$ Hábito de Fumar vs. Câncer de Pulmão • Percebe-se uma correlação positiva entre as duas variáveis. • Identificação dos grupos de ocupação e sua posição em relação à média global: ✓ Selecione a figura e clique com o botão direito do mouse: - Add > Data Labels > Use row numbers - Add > Reference Lines • Y positions: 100 · X positions: 100

No contexto do exemplo faz sentido prever o índice de mortalidade por câncer de pulmão num particular grupo, dado o índice de fumo do grupo.

Exemplo 5 - Dados de Anscombe

- O conjuntos de dados preparados para uso didático em aulas sobre correlação.
- Conjuntos 1, 2, 3 e 4 de variáveis X e Y
- Calcule a média, o desvio-padrão e o coeficiente de correlação para cada conjunto de dados

Planilha: anscombe

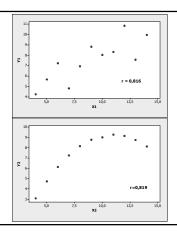

SUBC> no	opvalues.	-	c2 y2 x3 y: Y2; X3; Y3	-			
1 0.8		Y1 1	C2 Y2	х3	¥3	х4	
	0,8 319 0.7		19				
3 1,0	000 0,8	16 1,00	0,819	_			
			L6 0,591 00 -0.720		-0.345		
			L4 -0,478			(0,817)	
TB > Do		X1' 'Y1'	orrelation	' 'x3' '	r3' 'X4'	'Y4';	
UBC>	StDevia	.1011.					
Descrip	tive Stat	istics: X1	I; Y1; X2; `	Y2; X3; Y	′3; X4; Y	4	
/ariabl							
K1		3,32					
71		2,032					
(2 (2		2,021					
(3		3,32					
73	7.500						

Resumo dos Dados

	X		3		
	\bar{x}	S	\overline{y}	S	r
1	9,00	3,32	7,501	2,032	0,816
2	9,00	3,32	7,488	2,021	0,819
3	9,00	3,32	7,500	2,030	0,816
4	9,00	3,32	7,501	2,031	0,817

• Construir o diagrama de dispersão dos quatro conjuntos de dados, dispondo-os separadamente em painéis de um mesmo gráfico

Diagramas de Dispersão

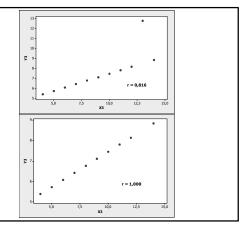


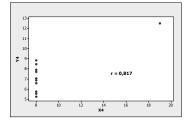
Correlação – Erros Comuns

· Linearidade:

r mede apenas a intensidade de relações lineares

Pode haver alguma relação entre x e y mesmo quando não há correlação linear significativa.


Outliers


 São observações muito extremas do conjunto de dados;

Tal como a média e o desvio-padrão, a correlação não é robusta, sendo fortemente afetadas por *outliers*

Não devem ser descartados, a não ser que exista razão sólida;

Utilize a correlação com cautela quando houver *outliers*: a melhor estratégia é relatar ambos os valores de *r* (com e sem o outlier)

Sem o outlier, não há variação em x e o coeficiente de correlação não pode ser calculado

Correlação - Erros Comuns

• Causalidade:

Uma correlação forte (r vizinho de +1 ou -1) não implica uma relação de causa e efeito.

O fato de duas grandezas tenderem a variar no mesmo sentido não implica a presença de relacionamento causal entre elas.

Correlação e Causalidade	
Perguntas pertinentes, no caso de correlação significante entre as variáveis:	
 Há uma relação de causa e efeito entre as variáveis? (x causa y? ou vice-versa) 	
Ex.: Relação entre gastos com propaganda e	
vendas É razoável concluir que mais propaganda	
resulta mais vendas	
	1
 É possível que a relação entre duas variáveis seja uma coincidência? 	
Ex.: Obter uma correlação significante entre o	
número de espécies animais vivendo em determinada área e o número de pessoas com	
mais de 2 carros, não garante causalidade	
É bastante improvável que as variáveis estejam diretamente relacionadas.	
	1
 É possível que a relação das variáveis tenha sido causada por uma terceira variável (ou 	
uma combinação de muitas outras variáveis)?	
Ex: Tempo dos vencedores das provas masculina e feminina dos 100 m rasos	
Os dados tem correlação linear positiva é duvidoso dizer que a diminuição no tempo	
masculino cause uma diminuição no tempo feminino;	
A relação deve depender de outras variáveis:	
técnica de treinamento, clima, etc.	

Correlação e Causalidade	
• A flutuação de uma 3ª variável faz com que <i>X</i> e <i>Y</i> variem no mesmo sentido;	
Esta 3ª variável é chamada <u>variável intercorrente</u> (não-conhecida);	
A falsa correlação originada pela 3ª variável é denominada correlação espúria;	
]
Variável Qualitativa e Quantitativa	
Variável Qualitativa vs. Quantitativa	
Objetivo:	
representar graficamente as duas variáveis combinadas;	
definir e calcular uma medida de associação	
entre as variáveis.	

Análise de Salários

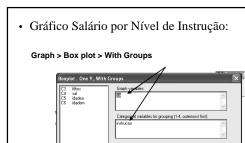
• Objetivo:

Analisar o comportamento dos salários dentro de cada nível de instrução

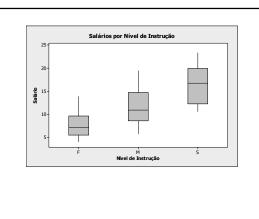
- ✓ Análise de medidas resumo
- ✓ Análise gráfica

• Medidas Resumo por nível de instrução:

Stat > Basic Statistics > Display Descriptive Statistics



· Saída do Minitab


Descriptive Statistics: sal

Variable	instrucao	Mean	StDev	Minimum	Q1	Median	Q3	Maximum
sal	F	7,837	2,956	4,000	5,503	7,125	9,588	13,850
	M	11,528	3,715	5,730	8,585	10,910	14,695	19,400
	S	16,48	4,50	10,53	12,23	16,74	19,89	23,30

As medidas de posição crescem com o aumento do nível de instrução.

Help

OK

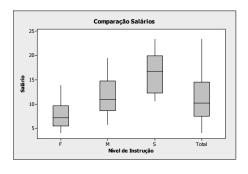
- Deseja-se inserir um box-plot para os salários globais
 - 1- Criar coluna dos sal_1 duplicando todos os salários:
 - ✓Em Session, Editor > Enable Commands. Stack 'sal' 'sal' 'sal_1'.

- Criar coluna dos inst_1 com os níveis de instrução e Total (no conjunto repetido de salários):
 - ✓ Criar a classificação Total para um grupo de 36 salários

Calc > Make Patterned Data > Text Values

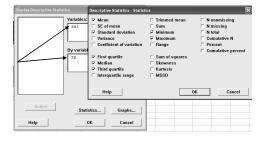
✓ Concluir coluna com os níveis de instrução de 36 salários e a classificação Total para um grupo repetido dos 36 salários

Em Session, Editor > Enable Commands. Stack 'instrucao' 'instrucao_1' 'instrucao_1'.


3. Gráfico agregando box-plot Total:

• Medidas resumo comparando-se com o Total

• Box-plots para comparação global de salários


Comentário

 É possível perceber, a partir destes dados e gráficos, uma dependência entre salário e nível de instrução:

o salário tende a ser maior quanto maior for o nível de escolaridade do empregado.

• Medidas Resumo por região de procedência:

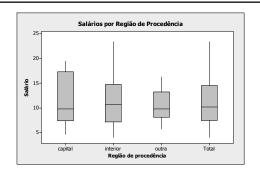
Stat > Basic Statistics > Display Descriptive Statistics

· Saída do Minitab

Descriptive Statistics: sal

Variable	rp	Mean	StDev	Minimum	Q1	Median	Q3	Maximum
sal	capital	11,46	5,48	4,56	7,39	9,77	17,26	19,40
	interior	11,55	5,30	4,00	7,18	10,65	14,71	23,30
	outra	10,445	3,145	5,730	8,090	9,800	13,195	16,220

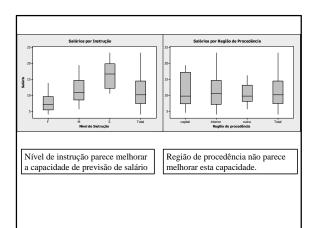
Parece não haver uma relação bem definida entre salário e região de procedência.


.

• Gráfico Salário por Região de Procedência, comparando com Total:

✓ Criar coluna *rp_1* com a região de procedência dos 36 empregados, repetindo a classificação Total

Graph > Box plot > With Groups



Comentários • Da análise percebe-se que não há uma relação bem definida entre salário e procedência. • Os salários parecem estar mais relacionados com o nível de instrução do que com a região de procedência. Quantificação de Dependência entre **Variáveis** • Duas variáveis quantitativas: Correlação. • Duas variáveis qualitativas: Qui-quadrado. • E no caso de uma variável qualitativa e uma quantitiativa? Medida Dependência: Quantitativa vs Qualitativa • Definir uma medida de associação entre as variáveis usando as variâncias dentro de nível de resposta da variável qualitativa e a variância global; Caso a variância em cada nível de resposta for menor do que a global, então a variável qualitativa melhora a capacidade de previsão da

variável quantitativa, existindo uma relação

entre ambas variáveis.

• Salários vs. Escolaridade:

✓Cálculo das variâncias:

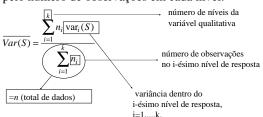
SUBC> Variance. Descriptive Statistics: sal_1

As variâncias DENTRO de cada nível $\underline{\tilde{sao}}$ menores que a variância global

• Salários vs. Região de Procedência:

✓Cálculo das variâncias:

MTB > Describe 'sal_1'; SUBC> By 'rp_1'; SUBC> Variance.


Descriptive Statistics: sal_1

Variable rp_1 Variance sal_1 capital 29,99 interior 28,05 outra 9,894 Total 21,045

As variâncias DENTRO de cada nível $\underline{n}\underline{\tilde{a}o}$ $\underline{s}\underline{\tilde{a}o}$ menores que a variância global

Medida de Associação

 Utiliza-se a média das variâncias, ponderada pelo número de observações em cada nível:

Nos exemplos: k=3 instrução (F,M,S) e região de procedência (capital,interior,outra).

- A variância média será comparada com a variância global
- x_{ij}: salário do j-ésimo indivíduo do i-ésimo nível de instrução, i=1,2,3 e j=1,...,ni
- n_i : total de indivíduos no nível i,
- Var_i(S): variância dentro do i-ésimo nível

$$Var_i(S) = \frac{1}{n_i} \sum_{i=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

$$\overline{x}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}$$
 média de salário para o nível de escolaridade i.

Variância Global

$$Var(S) = \frac{1}{n} \sum_{i=1}^{k} \sum_{i=1}^{n_i} (x_{ij} - \overline{x})^2$$

$$n = \sum_{i=1}^{k} n_i$$
 número total de observações

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}$$
 média global.

Variância Ponderada

$$\overline{Var(S)} = \frac{1}{n} \sum_{i=1}^{k} n_i \underbrace{\sum_{j=1}^{n_i} \frac{1}{n_i} (x_{ij} - \overline{x}_i)^2}_{} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

Relação entre as Variâncias

$$Var(S) = \underbrace{\frac{1}{n} \sum_{i=1}^{k} n_i (\overline{x}_i - \overline{x})^2 + \overline{Var(S)}}_{\geq 0}$$

tal que

$$\overline{Var(S)} \le Var(S)$$

Decomposição de Somas de Quadrados

Medida de Associação

- O grau de associação entre as duas variáveis pode ser definido como o ganho relativo na variância, obtido com a variável qualitativa.
- A medida é baseada na decomposição de somas de quadrados.

 $\frac{\text{variação devida aos grupos}}{\text{variação total}} = 1 - \frac{\text{variação residual}}{\text{variação total}}$

	R^2		
variação devida aos grupos $ variação devida aos grupos $ $ Var(S) - Var(S) $	_1	$\frac{\sqrt{Var(S)}}{Var(S)}$	Variação residual
$K = {Var(S)}$		Var(S ₁)	Variação total

- Média das variâncias <u>próxima</u> da variância global: grau de associação pequeno
- Média das variâncias <u>bem menor</u> que variância global: grau de associação grande.
- Quanto mais próximo de 1 for o valor de R2, maior a associação.

 \mathbb{R}^2

- $0 = R^2 = 1$
- O símbolo R² é usual em análise de variância e regressão, tópicos que vão ser abordados nas disciplinas Análise de Regressão e Planejamento de Experimentos.

7	
╛	
_	
7	

Salários vs Instrução

• Saída do Minitab:

```
MTB > Describe 'sal_1';
SUBC> By 'instrucao_1';
SUBC> Variance.
```

Descriptive Statistics: sal_1

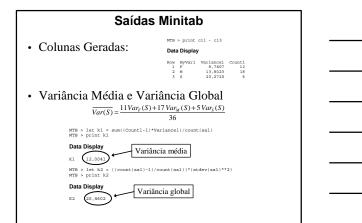
Salário x Escolaridade - Cálculo de R2

• Variância Global: $Var(S) = \frac{35(21,045)}{36} = 20,4602$

Variância grupos:

 $Var_{F}(S) = \frac{11(8,741)}{12} = 8,0123$ $Var_{W}(S) = \frac{17(13,802)}{18} = 13,0355$ $Var_{W}(S) = \frac{5(20,270)}{6} = 16,8933$

• Variância média: $\overline{Var(S)} = \frac{12(8,0123) + 18(13,0355) + 6(16,8933)}{36} = 12,0041$


• R^2 : $R^2 = \frac{Var(S) - \overline{Var(S)}}{36} = \frac{20,4602 - 12,0041}{20,4602} = 0,4133$

Diz-se que 41,33% da variação total do salário é explicada pela variável instrução.

Usando o Minitab para o Cálculo

 Armazenamento das variâncias por grupo Stat > Basic Statistics > Store Descriptive Statistics

Tabela para Cálculo de R² FM S Total $\sum_{i} x_{i}$ Soma simples 207,51 400,40 94,04 98,85 Soma de quadrados 833,11 2.626,88 $\sum_{i} x_i^2$ 1.729,91 5.189,90 simples 12 18 36 7,84 11,53 Média 16,48 11,12 \bar{x} Soma de quadrados $\sum (x_i - \overline{x})^2$ 96,15 (736,57) 234,64 10,36

Variação Residual

432,15

Variação Total

Cálculo Tabela pelo Minitab

· Cálculo parcial das linhas

corrigida

MTB > Describe sal; SUBC> By instrucao; SUBC> Sums; SUBC> SSQ; SUBC> counts; SUBC> mean.

Descriptive Statistics: sal

Tariable instrucao Count Mean Sum Squares
ral F 12 7,837 94,040 83,108
M 18 11,528 207,510 2626,884
S 6 16,48 98,85 1729,91

Cálculo Tabela pelo Minitab

· Cálculo da linha final:

$$\sum_{i} (x_i - \overline{x})^2 = \sum_{i} x_i^2 - n\overline{x}^2$$

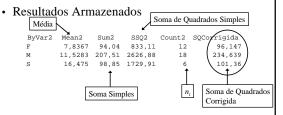
é a variância x por $(n_i - 1)$

MTB > Describe 'sal_1'; SUBC> By 'instrucao_1'; SUBC> Variance.

Descriptive Statistics: sal_1

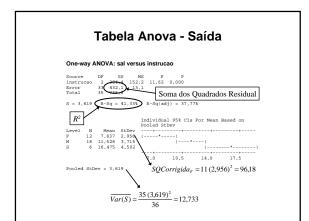
Cálculo Tabela pelo Minitab

• Armazenamento dos valores:

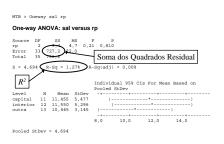

Cálculo da Soma dos Quadrados Corrigida

MTB > Let 'SQCorrigida' = 'SSQ2'-'Count2'*('Mean2'**2)
MTB > Sum 'SQCorrigida

Sum of SQCorrigida


Sum of SQCorrigida

432,146


 Todos os resultados são rapidamente obtidos por Análise de Variância

Salários vs Região de Prodência

· Saída do Minitab:

Comentário	
• Comparando-se os valores de R ² em cada associação estudada, verifica-se que há uma relação entre salário e instrução, não ocorrendo relação entre salário e região de procedência.	
]
Referências	
	1
Bibliografia Recomendada	-
Montgomery, D. C. e Runger, G. C. (LTC) Estatística aplicada e probabilidade para engenheiros	
Bussab, W. O. e Morettin, P. A. (Saraiva) Estatística básica	