8.3 Lista # 21 - Distribuição Normal Bivariada

- 1. Suponha que duas variáveis aleatórias X_1 e X_2 têm uma distribuição normal bivariada e que $Var(X_1) = Var(X_2)$. Mostre que a soma $X_1 + X_2$ e a diferença $X_1 X_2$ são variáveis aleatórias independentes.
- 2. Suponha que X_1 e X_2 têm distribuição normal bivariada, sendo que $E(X_1|X_2)=3,7-0,15X_2$, $E(X_2|X_1)=0,4-0,6X_1$ e $Var(X_2|X_1)=3,64$. Encontre:
 - (a) A média e a variância de X_1 ; Resp.: $\mu_1 = 4, \sigma_1 = 1$
 - (b) A média e a variância de X_2 ; $Resp.: \mu_2 = -2, \sigma_2 = 2$
 - (c) A correlação de X_1 e X_2 . Resp.: -0, β
- 3. Seja $f(x_1, x_2)$ a função de densidade de probabilidade de uma distribuição normal bivariada. Mostre que seu valor máximo é atingido no ponto $x_1 = \mu_1$ e $x_2 = \mu_2$
- 4. Suponha que duas variáveis aleatórias X_1 e X_2 tem uma distribuição normal bivariada e que duas outras variáveis aleatórias sejam definidas como:

$$Y_1 = a_{11}X_1 + a_{12}X_2 + b_1$$

$$Y_2 = a_{21}X_1 + a_{22}X_2 + b_1$$

onde

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| \neq 0.$$

Mostre que Y_1 e Y_2 têm distribuição normal bivariada.

- 5. Suponha que uma variável aleatória X tenha uma distribuição normal e que para todo xe e a distribuição condicional de uma outra variável aleatória Y dado X=x é uma distribuição normal com médica ax+b e variância τ^2 , onde a, b e τ são constantes. Prove que a distribuição conjunta de X e Y é uma distribuição normal bivariada.
- 6. Sejam X_1, \dots, X_n variáveis aleatórias i.i.d., tendo distribuição normal com média μ e variância σ^2 . Defina a média amostral $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Neste problema, desejamos encontrar a distribuição condicional de X_i dado \bar{X}_n
 - (a) Mostre que X_i e \bar{X}_n têm uma distribuição normal bivariada, ambas com média μ , variâncias σ^2 e σ^2/n , respectivamente e correlação 1/sqrtn; Dica: seja $Y = \sum_{j \neq i} X_j$. Mostre agora que Y e X_i são normais independentes, e que \bar{X}_n e X_i são combinações lineares de Y e X_i .
 - (b) Mostre que a distribuição condicional de X_i dado $\bar{X}_n = \bar{x}_n$ é uma normal com média \bar{x}_n e variância $\sigma^2(1-1/n)$;

7. Suponha que X tenha uma distribuição normal padrão e que a distribuição de Y dado X seja uma distribuição normal com média 2X-3 e variância 12. Determine a distribuição marginal de Y e o valor de $\rho(X,Y)$.

Resp.:
$$Y \sim N(\mu = -3, \sigma^2 = 16, \rho(X, Y) = 1/2$$

- 8. Suponha que X_1 e X_2 tenham uma distribuição normal bivariada, com $E(X_2) = 0$. Determine $E(X_1^2 X_2)$
- 9. Suponha que X_1 e X_2 têm distribuição normal bivariada com média μ_1 e μ_2 , variâncias σ_1^2 e σ_2^2 , correlação ρ . Determine a distribuição de X_1-3X_2
- 10. Num certo instante de tempo, as taxas de juros de 30 e 60 dias têm, conjuntamente, uma distribuição normal bivariada com médias 16% e 16.8% ao ano, e desvios padrões 4% e 5% ao ano respectivamente. A correlação entre as taxas é 0,90. Calcule:
 - (a) A probabilidade da taxa de 30 dias estar entre 14% e 18%.
 - (b) A probabilidade da taxa de 60 dias estar entre 14% e 18%.
 - (c) A probabilidade da taxa de 30 dias estar entre 14% e 18% sabendo que a taxa de 60 dias está hoje em 22%.
 - (d) A probabilidade da taxa de 30 dias estar entre 14% e 18% sabendo que a taxa de 60 dias está hoje em 15%.
 - (e) A probabilidade da taxa de 60 dias estar entre 14% e 18% sabendo que a taxa de 30 dias está hoje em 18%.
- 11. Fez-se uma pesquisa de preços de roupas masculinas num shopping center. Uma amostra dos produtos existentes revela que o preço das calças é uma variável normal com média R\$80 e desvio padrão R\$30. O preço das camisas é, por sua vez, uma variável normal com média R\$60 e desvio padrão R\$25. A correlação entre os preços de calças e camisas é 0, 6. Calcule as seguintes probabilidades:
 - (a) De um par de calças custar entre R\$60 e R\$95.
 - (b) De um par de calças custar entre R\$60 e R\$95 sabendo que uma camisa custa R\$75 nesta loja.
 - (c) De um par de calças custar entre R\$60 e R\$95 sabendo que uma camisa custa R\$50 nesta loja.
 - (d) Qual é a distribuição condicional dos preços das camisas sabendo que o preço das calças é R\$100?